Spelling suggestions: "subject:"processus ponctuels marquée"" "subject:"processus ponctuelle marquée""
1 |
Modélisation de structures curvilignes et ses applications en vision par ordinateur / Curvilinear structure modeling and its applications in computer visionJeong, Seong-Gyun 23 November 2015 (has links)
Dans cette thèse, nous proposons des modèles de reconstruction de la structure curviligne fondée sur la modélisation stochastique et sur un système d’apprentissage structuré. Nous supposons que le réseau de lignes, dans sa totalité, peut être décomposé en un ensemble de segments de ligne avec des longueurs et orientations variables. Cette hypothèse nous permet de reconstituer des formes arbitraires de la structure curviligne pour différents types de jeux de données. Nous calculons les descripteurs des caractéristiques curvilignes fondés sur les profils des gradients d’image et les profils morphologiques. Pour le modèle stochastique, nous proposons des contraintes préalables qui définissent l'interaction spatiale des segments de ligne. Pour obtenir une configuration optimale correspondant à la structure curviligne latente, nous combinons plusieurs hypothèses de ligne qui sont calculées par échantillonnage MCMC avec différents jeux de paramètres. De plus, nous apprenons une fonction de classement qui prédit la correspondance du segment de ligne donné avec les structures curvilignes latentes. Une nouvelle méthode fondée sur les graphes est proposée afin d’inférer la structure sous-jacente curviligne en utilisant les classements de sortie des segments de ligne. Nous utilisons nos modèles pour analyser la structure curviligne sur des images statiques. Les résultats expérimentaux sur de nombreux types de jeux de données démontrent que les modèles de structure curviligne proposés surpassent les techniques de l'état de l'art. / In this dissertation, we propose curvilinear structure reconstruction models based on stochastic modeling and ranking learning system. We assume that the entire line network can be decomposed into a set of line segments with variable lengths and orientations. This assumption enables us to reconstruct arbitrary shapes of curvilinear structure for different types of datasets. We compute curvilinear feature descriptors based on the image gradient profiles and the morphological profiles. For the stochastic model, we propose prior constraints that define the spatial interaction of line segments. To obtain an optimal configuration corresponding to the latent curvilinear structure, we combine multiple line hypotheses which are computed by MCMC sampling with different parameter sets. Moreover, we learn a ranking function which predicts the correspondence of the given line segment and the latent curvilinear structures. A novel graph-based method is proposed to infer the underlying curvilinear structure using the output rankings of the line segments. We apply our models to analyze curvilinear structure on static images. Experimental results on wide types of datasets demonstrate that the proposed curvilinear structure modeling outperforms the state-of-the-art techniques.
|
2 |
Segmentation d'images de façades de bâtiments acquises d'un point de vue terrestreBurochin, Jean-Pascal, Burochin, Jean-Pascal 02 May 2012 (has links) (PDF)
L'analyse de façades (détection, compréhension et reconstruction) à partir d'images acquises depuis la rue est aujourd'hui un thème de recherche très actif en photogrammétrie et en vision par ordinateur de part ses nombreuses applications industrielles. Cette thèse montre des avancées réalisées dans le domaine de la segmentation générique de grands volumes de ce type d'images, contenant une ou plusieurs zones de façades (entières ou tronquées).Ce type de données se caractérise par une complexité architecturale très riche ainsi que par des problèmes liés à l'éclairage et au point de vue d'acquisition. La généricité des traitements est un enjeu important. La contrainte principale est de n'introduire que le minimum d'a priori possible. Nous basons nos approches sur les propriétés d'alignements et de répétitivité des structures principales de la façade. Nous proposons un partitionnement hiérarchique des contours de l'image ainsi qu'une détection de grilles de structures répétitives par processus ponctuels marqués. Sur les résultats, la façade est séparée de ses voisines et de son environnement (rue, ciel). D'autre part, certains éléments comme les fenêtres, les balcons ou le fond de mur, sans être reconnus, sont extraits de manière cohérente. Le paramétrage s'effectue en une seule passe et s'applique à tous les styles d'architecture rencontrés. La problématique se situe en amont de nombreuses thématiques comme la séparation de façades, l'accroissement du niveau de détail de modèles urbains 3D générés à partir de photos aériennes ou satellitaires, la compression ou encore l'indexation à partir de primitives géométriques (regroupement de structures et espacements entre elles
|
3 |
Segmentation d'images de façades de bâtiments acquises d'un point de vue terrestre / Ground-based building facade image segmentationBurochin, Jean-Pascal 02 May 2012 (has links)
L'analyse de façades (détection, compréhension et reconstruction) à partir d'images acquises depuis la rue est aujourd'hui un thème de recherche très actif en photogrammétrie et en vision par ordinateur de part ses nombreuses applications industrielles. Cette thèse montre des avancées réalisées dans le domaine de la segmentation générique de grands volumes de ce type d'images, contenant une ou plusieurs zones de façades (entières ou tronquées).Ce type de données se caractérise par une complexité architecturale très riche ainsi que par des problèmes liés à l'éclairage et au point de vue d'acquisition. La généricité des traitements est un enjeu important. La contrainte principale est de n'introduire que le minimum d'a priori possible. Nous basons nos approches sur les propriétés d'alignements et de répétitivité des structures principales de la façade. Nous proposons un partitionnement hiérarchique des contours de l'image ainsi qu'une détection de grilles de structures répétitives par processus ponctuels marqués. Sur les résultats, la façade est séparée de ses voisines et de son environnement (rue, ciel). D'autre part, certains éléments comme les fenêtres, les balcons ou le fond de mur, sans être reconnus, sont extraits de manière cohérente. Le paramétrage s'effectue en une seule passe et s'applique à tous les styles d'architecture rencontrés. La problématique se situe en amont de nombreuses thématiques comme la séparation de façades, l'accroissement du niveau de détail de modèles urbains 3D générés à partir de photos aériennes ou satellitaires, la compression ou encore l'indexation à partir de primitives géométriques (regroupement de structures et espacements entre elles / Facade analysis (detection, understanding and field of reconstruction) in street level imagery is currently a very active field of research in photogrammetric computer vision due to its many applications. This thesis shows some progress made in the field of generic segmentation of a broad range of images that contain one or more facade areas (as a whole or in part).This kind of data is carecterized by a very rich and varied architectural complexity and by problems in lighting conditions and in the choice of a camera's point of view. Workflow genericity is an important issue. One significant constraint is to be as little biased as possible. The approches presented extract the main facade structures based on geometric properties such as alignment and repetitivity. We propose a hierarchic partition of the image contour edges and a detection of repetitive grid patterns based on marked point processes. The facade is set appart from its neighbooring façades and from its environment (the ground, the sky). Some elements such as windows, balconies or wall backgrounds, are extracted in a relevant way, without being recognized. The parameters regulation is done in one step and refers to all architectural styles encountered. The problem originates from most themes such as facade separation, the increase of level of details in 3D city models generated from aerial or satellite imagery, compression or indexation based on geometric primitives (structure grouping and space between them)
|
4 |
Élaboration d'une méthode tomographique de reconstruction 3D en vélocimétrie par image de particules basée sur les processus ponctuels marqués / Elaboration of 3D reconstruction tomographic method in particle image velocimetry based on marked point ProcessBen Salah, Riadh 03 September 2015 (has links)
Les travaux réalisés dans cette thèse s'inscrivent dans le cadre du développement de techniques de mesure optiques pour la mécanique des fluides visant la reconstruction de volumes de particules 3D pour ensuite en déduire leurs déplacements. Cette technique de mesure volumique appelée encore Tomo-PIV est apparue en 2006 et a fait l'objet d'une multitude de travaux ayant pour objectif l'amélioration de la reconstruction qui représente l'une des principales étapes de cette technique de mesure. Les méthodes proposées en littérature ne prennent pas forcément en compte la forme particulière des objets à reconstruire et ne sont pas suffisamment robustes pour faire face au bruit présent dans les images. Pour pallier à ce déficit, nous avons proposé une méthode de reconstruction tomographique, appelée (IOD-PVRMPP), qui se base sur les processus ponctuels marqués. Notre méthode permet de résoudre le problème de manière parcimonieuse. Elle facilite l'introduction de l'information à priori et résout les problèmes de mémoire liés aux approches dites "basées voxels". La reconstruction d'un ensemble de particules 3D est obtenue en minimisant une fonction d'énergie ce qui définit le processus ponctuel marqué. A cet effet, nous utilisons un algorithme de recuit simulé basé sur les méthodes de Monte-Carlo par Chaines de Markov à Saut Réversible (RJMCMC). Afin d'accélérer la convergence du recuit simulé, nous avons développé une méthode d'initialisation permettant de fournir une distribution initiale de particules 3D base sur la détection des particules 2D localisées dans les images de projections. Enfin cette méthode est appliquée à des écoulements fluides soit simulé, soit issu d'une expérience dans un canal turbulent à surface libre. L'analyse des résultats et la comparaison de cette méthode avec les méthodes classiques montrent tout l'intérêt de ces approches parcimonieuses. / The research work fulfilled in this thesis fit within the development of optical measurement techniques for fluid mechanics. They are particularly related to 3D particle volume reconstruction in order to infer their movement. This volumetric measurement technic, called Tomo-PIV has appeared on 2006 and has been the subject of several works to enhance the reconstruction, which represents one of the most important steps of this measurement technique. The proposed methods in Literature don't necessarily take into account the particular form of objects to reconstruct and they are not sufficiently robust to deal with noisy images. To deal with these challenges, we propose a tomographic reconstruction method, called (IOD-PVRMPP), and based on marked point processes. Our method allows solving the problem in a parsimonious way. It facilitates the introduction of prior knowledge and solves memory problem, which is inherent to voxel-based approaches. The reconstruction of a 3D particle set is obtained by minimizing an energy function, which defines the marked point process. To this aim, we use a simulated annealing algorithm based on Reversible Jump Markov Chain Monte Carlo (RJMCMC) method. To speed up the convergence of the simulated annealing, we develop an initialization method, which provides the initial distribution of 3D particles based on the detection of 2D particles located in projection images. Finally, this method is applied to simulated fluid flow or real one produced in an open channel flow behind a turbulent grid. The results and the comparisons of this method with classical ones show the great interest of this parsimonious approach.
|
5 |
Reconnaissance de forme pour l'analyse de scèneKulikova, Maria 16 December 2009 (has links) (PDF)
Cette thèse est composée de deux parties principales. La première partie est dédiée au problème de la classification d'espèces d'arbres en utilisant des descripteurs de forme, en combainison ou non, avec ceux de radiométrie ou de texture. Nous montrons notamment que l'information sur la forme améliore la performance d'un classifieur. Pour ce faire, dans un premier temps, une étude des formes de couronnes d'arbres extraites à partir d'images aériennes, en infrarouge couleur, est eectuée en utilisant une méthodologie d'analyse de formes des courbes continues fermées dans un espace de formes, en utilisant la notion de chemin géodésique sous deux métriques dans des espaces appropriés : une métrique non-élastique en utilisant la reprèsentation par la fonction d'angle de la courbe, ainsi qu'une métrique élastique induite par une représentation par la racinecarée appelée q-fonction. Une étape préliminaire nécessaire à la classification est l'extraction des couronnes d'arbre. Dans une seconde partie, nous abordons donc le problème de l'extraction d'objets de forme complexe arbitraire, à partir d'images de télédétection à très haute résolution. Nous construisons un modèle fondé sur les processus ponctuels marqués. Son originalité tient dans sa prise en compte d'objets de forme arbitraire par rapport aux objets de forme paramétrique, e.g. ellipses ou rectangles. Les formes sélectionnées sont obtenues par la minimisation locale d'une énergie de type contours actifs avec diérents a priori sur la forme incorporé. Les objets de la configuration finale (optimale) sont ensuite sélectionnés parmi les candidats par une dynamique de naissances et morts multiples, couplée à un schéma de recuit simulé. L'approche est validée sur des images de zones forestières à très haute résolution fournies par l'Université d'Agriculture de Suède.
|
6 |
Géométrie stochastique pour la détection et le suivi d'objets multiples dans des séquences d'images haute résolution de télédétection / Stochastic geometry for automatic multiple object detection and tracking in remotely sensed high resolution image sequencesCrăciun, Paula 25 November 2015 (has links)
Dans cette thèse, nous combinons les outils de la théorie des probabilités et de la géométrie stochastique pour proposer de nouvelles solutions au problème de la détection et le suivi d'objets multiples dans des séquences d'images haute résolution. Nous créons un cadre fondé sur des modèles de processus ponctuels marqués spatio-temporels pour détecter et suivre conjointement plusieurs objets dans des séquences d'images. Nous proposons l'utilisation de formes paramétriques simples pour décrire l'apparition de ces objets. Nous construisons de nouveaux modèles fondés sur des énergies dédiées constituées de plusieurs termes qui tiennent compte à la fois l'attache aux données et les contraintes physiques telles que la dynamique de l'objet, la persistance de la trajectoire et de l'exclusion mutuelle. Nous construisons un schéma d'optimisation approprié qui nous permet de trouver des minima locaux de l'énergie hautement non-convexe proposée qui soient proche de l'optimum global. Comme la simulation de ces modèles requiert un coût de calcul élevé, nous portons notre attention sur les dernières mises en oeuvre de techniques de filtrage pour le suivi d'objets multiples, qui sont connues pour être moins coûteuses en calcul. Nous proposons un échantillonneur hybride combinant le filtre de Kalman avec l'échantillonneur MCMC à sauts réversibles. Des techniques de calcul de haute performance sont également utilisées pour augmenter l'efficacité de calcul de notre méthode. Nous fournissons une analyse en profondeur du cadre proposé sur la base de plusieurs métriques classiques de suivi d'objets et de l'efficacité de calcul. / In this thesis, we combine the methods from probability theory and stochastic geometry to put forward new solutions to the multiple object detection and tracking problem in high resolution remotely sensed image sequences. We create a framework based on spatio-temporal marked point process models to jointly detect and track multiple objects in image sequences. We propose the use of simple parametric shapes to describe the appearance of these objects. We build new, dedicated energy based models consisting of several terms that take into account both the image evidence and physical constraints such as object dynamics, track persistence and mutual exclusion. We construct a suitable optimization scheme that allows us to find strong local minima of the proposed highly non-convex energy. As the simulation of such models comes with a high computational cost, we turn our attention to the recent filter implementations for multiple object tracking, which are known to be less computationally expensive. We propose a hybrid sampler by combining the Kalman filter with the standard Reversible Jump MCMC. High performance computing techniques are also used to increase the computational efficiency of our method. We provide an in-depth analysis of the proposed framework based on standard multiple object tracking metrics and computational efficiency.
|
Page generated in 0.0592 seconds