Spelling suggestions: "subject:"bproduct storage"" "subject:"2product storage""
1 |
Modelos lineares mistos para análise de dados longitudinais bivariados provenientes de ensaios agropecuários / Linear mixed models in the analysis bivariate longitudinal data from agricultural essaysAmaral, Simone Silmara Werner Gurgel do 19 September 2013 (has links)
Em estudos longitudinais, repetidas observações de uma mesma variável resposta são coletadas na mesma unidade experimental, em diferentes ocasiões. Como diferentes observações são realizadas na mesma unidade, espera-se que estas sejam correlacionadas, e que exista uma heterogeneidade de variâncias nas diferentes ocasiões. Dados longitudinais multivariados são obtidos quando um conjunto de diferentes variáveis respostas são mensuradas na mesma unidade experimental repetidas vezes ao longo do tempo; nesse caso, além da correlação entre observações realizadas na mesma unidade experimental, deve-se considerar também a correlação entre diferentes variáveis respostas. Uma forma de analisar dados longitudinais bivariados é empregar um modelo misto para cada uma das variáveis respostas e uni-los em um modelo misto bivariado especificando a distribuição conjunta para os efeitos aleatórios. As estimativas dos parâmetros desta distribuição comum podem ser usadas para avaliar a relação entre as diferentes respostas. Para exemplificar a utilização da técnica, foram utilizados dados de armazenamento de leite UAT. Os modelos lineares mistos bivariados foram ajustados por meio do software SAS e a análise gráfica foi realizada por meio do software R. Para seleção dos modelos empregou-se os Critérios de Informação de Akaike (AIC) e Bayesiano (BIC), e o teste da razão de verossimilhanças para comparação de modelos encaixados. A utilização do modelo linear misto bivariado permitiu modelar a heterogeneidade de variâncias entre ocasiões e a correlação entre diferentes medidas na mesma unidade experimental, bem como a correlação entre as variáveis respostas. / In longitudinal studies, repeated measurements of a response variable are taken in the same experimental unit over time. . Since different observations are measured on the same experimental unit, it is expected that there is correlation among the repeated measurements and heterogeneity of variances in different occasions. Multivariate Longitudinal Data are obtained when we measure a number of different response variables in the same experimental unit repeatedly over time; in this case, we should also observe a correlation between the different response variables. One way to analyze bivariate longitudinal data is to use a mixed model for each of the response variables, and unite them in bivariate mixed models specifying the joint distribution for random effects. Parameter estimates of this common distribution may be used to evaluate the relationship between different responses. As an example of the use of the technique, UHT milk storage data were used. Models were fitted using SAS software and the graphical analysis was done with software R. To model selection, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were used, and maximum likelihood ratio test was used to compare nested models. The use of bivariate mixed linear model allowed to model the heteroscedasticity of the occasions, the correlation between the different measurements in the same experimental unit and also the correlation between the different response variables.
|
2 |
Modelos lineares mistos para análise de dados longitudinais bivariados provenientes de ensaios agropecuários / Linear mixed models in the analysis bivariate longitudinal data from agricultural essaysSimone Silmara Werner Gurgel do Amaral 19 September 2013 (has links)
Em estudos longitudinais, repetidas observações de uma mesma variável resposta são coletadas na mesma unidade experimental, em diferentes ocasiões. Como diferentes observações são realizadas na mesma unidade, espera-se que estas sejam correlacionadas, e que exista uma heterogeneidade de variâncias nas diferentes ocasiões. Dados longitudinais multivariados são obtidos quando um conjunto de diferentes variáveis respostas são mensuradas na mesma unidade experimental repetidas vezes ao longo do tempo; nesse caso, além da correlação entre observações realizadas na mesma unidade experimental, deve-se considerar também a correlação entre diferentes variáveis respostas. Uma forma de analisar dados longitudinais bivariados é empregar um modelo misto para cada uma das variáveis respostas e uni-los em um modelo misto bivariado especificando a distribuição conjunta para os efeitos aleatórios. As estimativas dos parâmetros desta distribuição comum podem ser usadas para avaliar a relação entre as diferentes respostas. Para exemplificar a utilização da técnica, foram utilizados dados de armazenamento de leite UAT. Os modelos lineares mistos bivariados foram ajustados por meio do software SAS e a análise gráfica foi realizada por meio do software R. Para seleção dos modelos empregou-se os Critérios de Informação de Akaike (AIC) e Bayesiano (BIC), e o teste da razão de verossimilhanças para comparação de modelos encaixados. A utilização do modelo linear misto bivariado permitiu modelar a heterogeneidade de variâncias entre ocasiões e a correlação entre diferentes medidas na mesma unidade experimental, bem como a correlação entre as variáveis respostas. / In longitudinal studies, repeated measurements of a response variable are taken in the same experimental unit over time. . Since different observations are measured on the same experimental unit, it is expected that there is correlation among the repeated measurements and heterogeneity of variances in different occasions. Multivariate Longitudinal Data are obtained when we measure a number of different response variables in the same experimental unit repeatedly over time; in this case, we should also observe a correlation between the different response variables. One way to analyze bivariate longitudinal data is to use a mixed model for each of the response variables, and unite them in bivariate mixed models specifying the joint distribution for random effects. Parameter estimates of this common distribution may be used to evaluate the relationship between different responses. As an example of the use of the technique, UHT milk storage data were used. Models were fitted using SAS software and the graphical analysis was done with software R. To model selection, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were used, and maximum likelihood ratio test was used to compare nested models. The use of bivariate mixed linear model allowed to model the heteroscedasticity of the occasions, the correlation between the different measurements in the same experimental unit and also the correlation between the different response variables.
|
Page generated in 0.057 seconds