Spelling suggestions: "subject:"clorofil < badoberfläche> "" "subject:"clorofil < chipoberfläche> ""
1 |
The extended Hertzian Appraoch for lateral loadingSchwarzer, Norbert 11 February 2006 (has links) (PDF)
Motivated by the structure of the normal surface stress of the extended Hertzian approach [1] given due to terms of the form r^2n*(a^2-r^2)^(1/2) (n=0, 2, 4, 6…) it seems attractive to evaluate the complete elastic field also for shear loadings of this form. The reason for this lays in the demand for analytical tools for the description of mixed loading conditions as they appear for example in scratch experiments.
[1] N. Schwarzer, "Elastic Surface Deformation due to Indenters with Arbitrary symmetry of revolution", J. Phys. D: Appl. Phys., 37 (2004) 2761-2772
|
2 |
Modelling of Contact Problems of Rough SurfacesSchwarzer, Norbert 11 February 2006 (has links) (PDF)
In this paper it is shown that a completely analytical theory based on the extended Hertzian approach together with additional considerations taking into account the geometrical conditions of a curved surface provide an appropriate model for the theoretical “simulation” of a variety of asperity contact problems. This model yields relatively fast and easy to use tools for the analysing of contact problems arising in connection with rough surfaces.
In this study the results are shown on the example of a 3µm-DLC-coating on a steel substrate with asperities of about 100µm in diameter and 15µm height. It is found, that – under a general average pressure of 1GPa – the ideal asperity tip contact situation would lead to severe damage due to plastic flow within the steel substrate. On the other hand a rather conforming contact situation appears to be completely non critical.
|
3 |
The extended Hertzian Appraoch for lateral loadingSchwarzer, Norbert 11 February 2006 (has links)
Motivated by the structure of the normal surface stress of the extended Hertzian approach [1] given due to terms of the form r^2n*(a^2-r^2)^(1/2) (n=0, 2, 4, 6…) it seems attractive to evaluate the complete elastic field also for shear loadings of this form. The reason for this lays in the demand for analytical tools for the description of mixed loading conditions as they appear for example in scratch experiments.
[1] N. Schwarzer, "Elastic Surface Deformation due to Indenters with Arbitrary symmetry of revolution", J. Phys. D: Appl. Phys., 37 (2004) 2761-2772
|
4 |
Modelling of Contact Problems of Rough SurfacesSchwarzer, Norbert 11 February 2006 (has links)
In this paper it is shown that a completely analytical theory based on the extended Hertzian approach together with additional considerations taking into account the geometrical conditions of a curved surface provide an appropriate model for the theoretical “simulation” of a variety of asperity contact problems. This model yields relatively fast and easy to use tools for the analysing of contact problems arising in connection with rough surfaces.
In this study the results are shown on the example of a 3µm-DLC-coating on a steel substrate with asperities of about 100µm in diameter and 15µm height. It is found, that – under a general average pressure of 1GPa – the ideal asperity tip contact situation would lead to severe damage due to plastic flow within the steel substrate. On the other hand a rather conforming contact situation appears to be completely non critical.
|
Page generated in 0.0539 seconds