• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lead and Copper Contamination in Potable Water: Impacts of Redox Gradients, Water Age, Water Main Pipe Materials and Temperature

Masters, Sheldon 06 May 2015 (has links)
Potable water can become contaminated with lead and copper due to the corrosion of pipes, faucets, and fixtures. The US Environmental Protection Agency Lead and Copper Rule (LCR) is intended to target sampling at high-risk sites to help protect public health by minimizing lead and copper levels in drinking water. The LCR is currently under revision with a goal of better crafting sampling protocols to protect public health. This study examined an array of factors that determine the location and timing of "high-risk" in the context of sampling site selection and consumer health risks. This was done using field studies and well-controlled laboratory experiments. A pilot-scale simulated distribution system (SDS) was used to examine the complex relationship between disinfectant type (free chlorine and chloramine), water age (0-10.2 days), and pipe main material (PVC, cement, and iron). Redox gradients developed in the distribution system as controlled by water age and pipe material, which affected the microbiology and chemistry of the water delivered to consumer homes. Free chlorine disinfectant was the most stable in the presence of PVC while chloramine was most stable in the presence of cement. At shorter water ages where disinfectant residuals were present, chlorine tended to cause as much as 4 times more iron corrosion when compared to chloramine. However, the worst localized attack on iron materials occurred at high water age in the system with chloramine. It was hypothesized that this was due to denitrification-a phenomenon relatively unexplored in drinking water distribution systems and documented in this study. Cumulative chemical and biological changes, such as those documented in the study described above, can create "high-risk" hotspots for elevated lead and copper, with associated concerns for consumer exposure and regulatory monitoring. In both laboratory and field studies, trends in lead and copper release were site-specific and ultimately determined by the plumbing material, microbiology and chemistry. In many cases, elevated levels of lead and copper did not co-occur suggesting that, in a revised LCR, these contaminants will have to be sampled separately in order to identify worst case conditions. Temperature was also examined as a potentially important factor in lead and copper corrosion. Several studies have attributed higher incidence of childhood lead poisoning during the summer to increased soil and dust exposure; however, drinking water may also be a significant contributing factor. In large-scale pipe rigs, total and dissolved lead release was 3-5 times higher during the summer compared to the winter. However, in bench scale studies, higher temperature could increase, decrease, or have no effect on lead release dependent on material and water chemistry. Similarly, in a distribution system served by a centralized treatment plant, lead release from pure lead service lines increased with temperature in some homes but had no correlation in other homes. It is possible that changes throughout the distribution system such as disinfectant residual, iron, or other factors can create scales on pipes at individual homes, which determines the temperature dependency of lead release. Consumer exposure to lead can also be adversely influenced by the presence of particulate iron. In the case of Providence, RI, a well-intentioned decrease in the finished water pH from 10.3 to 9.7, resulted in an epidemic of red water complaints due to the corrosion of iron mains and a concomitant increase in water lead levels. Complementary bench scale and field studies demonstrated that higher iron in water is sometimes linked to higher lead in water, due to sorption of lead onto the iron particulates. Finally, one of the most significant emerging challenges associated with evaluating corrosion control and consumer exposure, is the variability in lead and copper during sampling due to semi-random detachment of lead particles to water, which can pose an acute health concern. Well-controlled test rigs were used to characterize the variability in lead and copper release and compared to consumer sampling during the LCR. The variability due to semi-random particulate detachment, is equal to the typical variability observed in LCR sampling, suggesting that this inherent variability is much more important than other common sources including customer error, customer failure to follow sampling instructions or long stagnation times. While instructing consumers to collect samples are low flow rates reduces variability, it will fail to detect elevated lead from many hazardous taps. Moreover, collecting a single sample to characterize health risks from a given tap, are not adequately protective to consumers in homes with lead plumbing, in an era when corrosion control has reduced the presence of soluble lead in water. Future EPA monitoring and public education should be changed to address this concern. / Ph. D.
2

Vertical Distribution and Seasonal Variation of Volatile Organic Compounds in the Ambient Atmosphere of a Petrochemical Industrial Complex

Yang, Jhih-Jhe 02 September 2011 (has links)
The emission of volatile organic compounds (VOCs) and odors from petrochemical industrial complex, including China Petroleum company (CPC),Renwu and Dazher petrochemical industrial parks, causes poor air quality of northern Kaohsiung. The removal efficiencies of elevated stacks and flares might play important roles on ambient air quality in metro Kaohsiung. Consequently, this study applied a tethered balloon technology to measure the vertical profile of VOCs, and ascertained their three dimensional dispersion in the atmosphere. The vertical profile of VOCs in ambient atmosphere surrounding the petrochemical industrial complex was measured during the intensive sampling periods (September 17-18th and December 20-21st, 2009 and April 8-9th and July 7-8th, 2010). Moreover, this study was designed to sample and analyze VOCs emitted from elevated stacks and flares, and estimate their emission factors. Finally, the source identification and ozone formation were further determined by principal component analysis (PCA) and ozone formation potential (OFP). This study found that some regions had relatively poorer air quality than other regions surrounding the petrochemical industrial complex. Most sampling sites with poor air quality were located at the downwind region of the petrochemical industrial complex, particularly with the prevailing winds blown from the northwest. Moreover, stratification phenomena were frequently observed at most sampling sites, indicating that high-altitude VOCs pollution should be considered for ambient air quality. This study revealed that the indicators of VOCs in northern Kaohsiung were toluene, C2 (ethylene+acetylene+ethane), and acetone. Vertical sampling of VOCs showed that the species of VOCs at the ground and high altitude were different, suggesting that ambient air quality at high altitude might be affected by the emission of VOCs from elevated stacks and flares at the petrochemical industrial complex. Results obtained from PCA showed that the major sources of VOCs in the ambient atmosphere of the petrochemical industrial complex were similar to the characteristics of VOCs emitted from the petrochemical industrial complex. The characteristics of VOCs at high altitude had strong correlation with petrochemical industry, indicating that the ambient air quality of northern Kaohsiung was highly influenced by the emission of VOCs from high stacks and flares. In addition, major VOCs for O3 formation potential at northern Kaohsiung were aromatics and vinyls, with particular species of toluene and C2. Moreover, air pollution episodes resulting from high O3 concentration was usually observed in early winter. Flare sampling results indicated that major VOCs emitted from the ground flare of CPC were alkanes and vinyls. The average removal efficiency of TVOCs was 98.2%. The average emission factor of VOCs was 0.0186 kg NMHC/kg flare gas. In addition, stack sampling results indicated that the emission factors of crude oil distillation process (P105), mixing process (P060), and rubber manufacturing process (P408) were 0.105, 1.11, and 61.97 g/Kl, respectively. The emission factor of P105 was lower than AP-42, while that of P408 was higher than AP-42.
3

Role of Chloride in Galvanized Iron Plumbing Corrosion and the Use of Fingerprinting Methods to Identify Water Lead Sources

Mohsin, Hisyam 01 July 2020 (has links)
In many source waters across the United States (US), chloride levels are increasing and this change could be problematic for galvanized iron pipe (GIP) installed in consumers' homes and buildings. The higher levels of chloride might increase the rate of galvanic corrosion between the sacrificial zinc coating and the underlying iron (steel) pipe. There are also concerns that the iron in GIP can accumulate lead on its surface from upstream lead service lines, occasionally causing high lead in water from GIP during scale sloughing and associated red water events. The role of high chloride and potential mitigation strategies by orthophosphate and alkalinity on galvanic iron-zinc corrosion in GIP were examined by using new iron and zinc wires, and complementary studies with 85-year-old harvested GIP coupons from the Washington Suburban Sanitary Commission (WSSC). Sequential samplings on a constructed pilot-scale test rig with copper – lead – GIP ¬– brass meter configuration were used to evaluate lead source fingerprinting methods (metal co-occurrence, correlating the plumbing configuration to sample profiling data, and evaluation of lead isotope ratios) and role of flow rate. As chloride concentration increased from 2.6 to 554 mg/L, galvanic current and weight loss of sacrificial zinc increased by about an order of magnitude. Iron leaching also increased by 4.4 times as chloride levels increased by a factor of 12 in WSSC modified water to simulate actual road salt runoff events. Increased orthophosphate or alkalinity could at least partly counter the adverse effects of chloride, as the average iron concentration decreased by 43% as orthophosphate level increased from 3.8 to 11.2 mg/L as P, and average iron concentrations decreased by 32% as alkalinity increased from 50 to 90 mg/L as CaCO3. Applying fingerprinting methods on sequential samples has the potential to determine whether premise plumbing contains GIP and/or lead pipe. Specifically, the metal co-occurrence fingerprinting technique was successful in identifying the location of GIP by the detection of low-level cadmium, and the lead isotope ratio fingerprinting technique was fairly successful in identifying lead pipe. Additionally, our study found that GIP was not contaminated by an upstream lead pipe after five months of conditioning; hence, water discoloration (iron level > 400 ppb) does not always indicate lead problems from GIP. However, with longer exposure of GIP to lead pipe, the magnitude of the problem might increase. As flow rate increased from 0.9 to 2.4 GPM, the median particulate iron release increased by 3.3 times, and the median particulate lead release (>83% particulate lead) increased by 4.9 times. / Master of Science / In many source waters across the United States (US), chloride levels are increasing and this change could be problematic for galvanized iron pipe (GIP) installed in consumers' homes and buildings. The higher levels of chloride might increase the rate of galvanic corrosion in GIP. There are also concerns that the iron in GIP can accumulate lead on its surface from upstream lead service lines, occasionally causing high lead in water from GIP during scale sloughing and associated red water events. The role of high chloride and potential mitigation strategies for GIP by adjusting orthophosphate and alkalinity were examined by conducting bench scale testing. Sequential samplings on a constructed pilot-scale test rig with different lead source pipe sections were used to evaluate lead source fingerprinting methods and role of flow rate. Higher chloride in water increased galvanic current and weight loss of zinc coating as chloride concentration increased from 2.6 to 554 mg/L in the fundamental experiments. Iron leaching also increased as chloride levels increased in the GIP coupon testing. Increasing orthophosphate or alkalinity proved to counter the adverse effects of chloride as the average iron concentration decreased. Sampling profiles can be useful in determining whether premise plumbing contains GIP or lead pipe by using fingerprinting methods. Iron and lead leaching from GIP increased as the water flow rate increased.

Page generated in 0.0797 seconds