• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Researches in the acridine series. Preparation of an isomer of proflavine, and of acriflavine ...

Lauffer, Paul Gideon Isaac, January 1926 (has links)
Thesis (Ph. D.)--Columbia University, 1926. / Vita. eContent provider-neutral record in process. Description based on print version record. Bibliography: [3] p. at end.
2

Delayed emission and the heavy-atom effect as probes of biomolecular structure and dynamics

Lee, William Edward. January 1985 (has links)
No description available.
3

Nucleic Acid Assembly Using Small Molecule Interactions

Jain, Swapan Satyen 10 July 2006 (has links)
Lifes origin is, in many ways, coupled to understanding the evolution of nucleic acids. In contemporary life, proteins and nucleic acids are intricately dependent upon each other for a host of functions including, but not limited to, replication and chemical ligation. Protein enzymes are necessary for the synthesis of DNA and RNA, while nucleic acids are necessary for both the coding and synthesis of proteins. According to the RNA World hypothesis, early life used nucleic acids for both information storage and chemical catalysis before the emergence of protein enzymes. However, it still remains a mystery how nucleic acids were able to assemble and replicate before the advent of protein enzymes. We have utilized the ability of small molecule intercalation to assemble nucleic acids into stable secondary structures. Our motivation in this pursuit comes from the recently proposed Molecular Midwife hypothesis where small molecules may have acted as nanoscale structural scaffolds upon which the nucleic acid bases were able to stack into stable structures and undergo assembly into polymers. We have also found that the kinetics and thermodynamics of small molecule-mediated assembly and secondary structure formation are strongly dependent upon oligonucleotide length. Small molecules bind to nucleic acids by multiple modes of binding and this phenomenon must be properly understood in order to achieve robust and versatile assembly of nucleic acid structures.
4

Delayed emission and the heavy-atom effect as probes of biomolecular structure and dynamics

Lee, William Edward. January 1985 (has links)
No description available.

Page generated in 0.0308 seconds