Spelling suggestions: "subject:"prognostics anda health"" "subject:"prognostics ando health""
31 |
AI-DRIVEN PREDICTIVE WELLNESS OF MECHANICAL SYSTEMS: ASSESSMENT OF TECHNICAL, ENVIRONMENTAL, AND ECONOMIC PERFORMANCEWo Jae Lee (10695907) 25 April 2021 (has links)
<p>One way to reduce the lifecycle cost and environmental
impact of a product in a circular economy is to extend its lifespan by either
creating longer-lasting products or managing the <a>product
properly during its use stage. Life extension of a product is envisioned to
help better utilize </a>raw materials efficiently and slow the rate of resource
depletion. In the case of manufacturing equipment (e.g., an electric motor on a
machine tool), securing reliable service life as well as the life extension are
important for consistent production and operational excellence in a factory. However,
manufacturing equipment is often utilized without a planned maintenance
approach. Such a strategy frequently results in unplanned downtime, owing to
unexpected failures. Scheduled maintenance replaces components frequently to
avoid unexpected equipment stoppages, but increases the time associated with
machine non-operation and maintenance cost. </p><p><br></p>
<p>Recently, the emergence of Industry 4.0 and smart systems is
leading to increasing attention to predictive maintenance (PdM) strategies that
can decrease the cost of downtime and increase the availability (utilization
rate) of manufacturing equipment. PdM also has the potential to foster
sustainable practices in manufacturing by maximizing the useful lives of
components. In addition, advances in sensor technology (e.g., lower fabrication
cost) enable greater use of sensors in a factory, which in turn is producing
greater and more diverse sets of data. Widespread use of wireless sensor
networks (WSNs) and plug-and-play interfaces for the data collection on
product/equipment states are allowing predictive maintenance on a much greater
scale. Through advances in computing, big data analysis is faster/improved and has
allowed maintenance to transition from run-to-failure to statistical
inference-based or machine learning prediction methods.</p><p><br></p>
<p>Moreover, maintenance practice in a factory is evolving from
equipment “health management” to equipment “wellness” by establishing an
integrated and collaborative manufacturing system that responds in real-time to
changing conditions in a factory. The equipment wellness is an active process
of becoming aware of the health condition and of making choices that achieve
the full potential of the equipment. In order to enable this, a large amount of
machine condition data obtained from sensors needs to be analyzed to diagnose the
current health condition and predict future behavior (e.g., remaining useful
life). If a fault is detected during this diagnosis, a root cause of a fault
must be identified to extend equipment life and prevent problem reoccurrence.</p><p><br></p>
<p>However, it is challenging to build a model capturing a
relationship between multi-sensor signals and mechanical failures, considering
the dynamic manufacturing environment and the complex mechanical system in
equipment. Another key challenge is to obtain usable machine condition data to
validate a method.</p><p><br></p>
<p>A goal of the proposed work is to develop a systematic tool
for maintenance in manufacturing plants using emerging technologies (e.g., AI,
Smart Sensor, and IoT). The proposed method will facilitate decision-making
that supports equipment maintenance by rapidly detecting a worn component and
estimating remaining useful life. In order to diagnose and prognose a health condition
of equipment, several data-driven models that describe the relationships
between proxy measures (i.e., sensor signals) and machine health conditions are
developed and validated through the experiment for several different manufacturing-oriented
cases (e.g., cutting tool, gear, and bearing). To enhance the robustness and
the prediction capability of the data-driven models, signal processing is
conducted to preprocess the raw signals using domain knowledge. Through this
process, useful features from the large dataset are extracted and selected,
thus increasing computational efficiency in model training. To make a decision
using the processed signals, a customized deep learning architecture for each
case is designed to effectively and efficiently learn the relationship between
the processed signals and the model’s outputs (e.g., health indicators).
Ultimately, the method developed through this research helps to avoid
catastrophic mechanical failures, products with unacceptable quality, defective
products in the manufacturing process as well as to extend equipment service
life.</p><p><br></p>
<p>To summarize, in this dissertation, the assessment of
technical, environmental and economic performance of the AI-driven method for
the wellness of mechanical systems is conducted. The proposed methods are applied
to (1) quantify the level of tool wear in a machining process, (2) detect
different faults from a power transmission mini-motor testbed (CNN), (3) detect
a fault in a motor operated under various rotation speeds, and (4) to predict
the time to failure of rotating machinery. Also, the effectiveness of
maintenance in the use stage is examined from an environmental and economic
perspective using a power efficiency loss as a metric for decision making
between repair and replacement.</p><br>
|
32 |
Contribution au pronostic de durée de vie des systèmes piles à combustible PEMFC / Contribution to lifetime prognostics for proton exchange membrane fuel cell (PEMFC) systemsSilva Sanchez, Rosa Elvira 21 May 2015 (has links)
Les travaux de cette thèse visent à apporter des éléments de solutions au problème de la durée de vie des systèmes pile à combustible (FCS – Fuel Cell System) de type à « membrane échangeuse de protons » (PEM – Proton Exchange Membrane) et se décline sur deux champs disciplinaires complémentaires :Une première approche vise à augmenter la durée de vie de celle-ci par la conception et la mise en œuvre d'une architecture de pronostic et de gestion de l'état de santé (PHM – Prognostics & Health Management). Les PEM-FCS, de par leur technologie, sont par essence des systèmes multi-physiques (électriques, fluidiques, électrochimiques, thermiques, mécaniques, etc.) et multi-échelles (de temps et d'espace) dont les comportements sont difficilement appréhendables. La nature non linéaire des phénomènes, le caractère réversible ou non des dégradations, et les interactions entre composants rendent effectivement difficile une étape de modélisation des défaillances. De plus, le manque d'homogénéité (actuel) dans le processus de fabrication rend difficile la caractérisation statistique de leur comportement. Le déploiement d'une solution PHM permettrait en effet d'anticiper et d'éviter les défaillances, d'évaluer l'état de santé, d'estimer le temps de vie résiduel du système, et finalement, d'envisager des actions de maîtrise (contrôle et/ou maintenance) pour assurer la continuité de fonctionnement. Une deuxième approche propose d'avoir recours à une hybridation passive de la PEMFC avec des super-condensateurs (UC – Ultra Capacitor) de façon à faire fonctionner la pile au plus proche de ses conditions opératoires optimales et ainsi, à minimiser l'impact du vieillissement. Les UCs apparaissent comme une source complémentaire à la PEMFC en raison de leur forte densité de puissance, de leur capacité de charge/décharge rapide, de leur réversibilité et de leur grande durée de vie. Si l'on prend l'exemple des véhicules à pile à combustible, l'association entre une PEMFC et des UCs peut être réalisée en utilisant un système hybride de type actif ou passif. Le comportement global du système dépend à la fois du choix de l'architecture et du positionnement de ces éléments en lien avec la charge électrique. Aujourd'hui, les recherches dans ce domaine se focalisent essentiellement sur la gestion d'énergie entre les sources et stockeurs embarqués ; et sur la définition et l'optimisation d'une interface électronique de puissance destinée à conditionner le flux d'énergie entre eux. Cependant, la présence de convertisseurs statiques augmente les sources de défaillances et pannes (défaillance des interrupteurs du convertisseur statique lui-même, impact des oscillations de courant haute fréquence sur le vieillissement de la pile), et augmente également les pertes énergétiques du système complet (même si le rendement du convertisseur statique est élevé, il dégrade néanmoins le bilan global). / This thesis work aims to provide solutions for the limited lifetime of Proton Exchange Membrane Fuel Cell Systems (PEM-FCS) based on two complementary disciplines:A first approach consists in increasing the lifetime of the PEM-FCS by designing and implementing a Prognostics & Health Management (PHM) architecture. The PEM-FCS are essentially multi-physical systems (electrical, fluid, electrochemical, thermal, mechanical, etc.) and multi-scale (time and space), thus its behaviors are hardly understandable. The nonlinear nature of phenomena, the reversibility or not of degradations and the interactions between components makes it quite difficult to have a failure modeling stage. Moreover, the lack of homogeneity (actual) in the manufacturing process makes it difficult for statistical characterization of their behavior. The deployment of a PHM solution would indeed anticipate and avoid failures, assess the state of health, estimate the Remaining Useful Lifetime (RUL) of the system and finally consider control actions (control and/or maintenance) to ensure operation continuity.A second approach proposes to use a passive hybridization of the PEMFC with Ultra Capacitors (UC) to operate the fuel cell closer to its optimum operating conditions and thereby minimize the impact of aging. The UC appear as an additional source to the PEMFC due to their high power density, their capacity to charge/discharge rapidly, their reversibility and their long life. If we take the example of fuel cell hybrid electrical vehicles, the association between a PEMFC and UC can be performed using a hybrid of active or passive type system. The overall behavior of the system depends on both, the choice of the architecture and the positioning of these elements in connection with the electric charge. Today, research in this area focuses mainly on energy management between the sources and embedded storage and the definition and optimization of a power electronic interface designated to adjust the flow of energy between them. However, the presence of power converters increases the source of faults and failures (failure of the switches of the power converter and the impact of high frequency current oscillations on the aging of the PEMFC), and also increases the energy losses of the entire system (even if the performance of the power converter is high, it nevertheless degrades the overall system).
|
Page generated in 0.0778 seconds