• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Threat Detection in Program Execution and Data Movement: Theory and Practice

Shu, Xiaokui 25 June 2016 (has links)
Program attacks are one of the oldest and fundamental cyber threats. They compromise the confidentiality of data, the integrity of program logic, and the availability of services. This threat becomes even severer when followed by other malicious activities such as data exfiltration. The integration of primitive attacks constructs comprehensive attack vectors and forms advanced persistent threats. Along with the rapid development of defense mechanisms, program attacks and data leak threats survive and evolve. Stealthy program attacks can hide in long execution paths to avoid being detected. Sensitive data transformations weaken existing leak detection mechanisms. New adversaries, e.g., semi-honest service provider, emerge and form threats. This thesis presents theoretical analysis and practical detection mechanisms against stealthy program attacks and data leaks. The thesis presents a unified framework for understanding different branches of program anomaly detection and sheds light on possible future program anomaly detection directions. The thesis investigates modern stealthy program attacks hidden in long program executions and develops a program anomaly detection approach with data mining techniques to reveal the attacks. The thesis advances network-based data leak detection mechanisms by relaxing strong requirements in existing methods. The thesis presents practical solutions to outsource data leak detection procedures to semi-honest third parties and identify noisy or transformed data leaks in network traffic. / Ph. D.
2

GENERTIA a system for vulnerability analysis, design and redesign of immunity-based anomaly detection system /

Hou, Haiyu, Dozier, Gerry V. January 2006 (has links) (PDF)
Dissertation (Ph.D.)--Auburn University, 2006. / Abstract. Vita. Includes bibliographic references (p.149-156).
3

Program Anomaly Detection Against Data-Oriented Attacks

Cheng, Long 29 August 2018 (has links)
Memory-corruption vulnerability is one of the most common attack vectors used to compromise computer systems. Such vulnerabilities could lead to serious security problems and would remain an unsolved problem for a long time. Existing memory corruption attacks can be broadly classified into two categories: i) control-flow attacks and ii) data-oriented attacks. Though data-oriented attacks are known for a long time, the threats have not been adequately addressed due to the fact that most previous defense mechanisms focus on preventing control-flow exploits. As launching a control-flow attack becomes increasingly difficult due to many deployed defenses against control-flow hijacking, data-oriented attacks are considered an appealing attack technique for system compromise, including the emerging embedded control systems. To counter data-oriented attacks, mitigation techniques such as memory safety enforcement and data randomization can be applied in different stages over the course of an attack. However, attacks are still possible because currently deployed defenses can be bypassed. This dissertation explores the possibility of defeating data-oriented attacks through external monitoring using program anomaly detection techniques. I start with a systematization of current knowledge about exploitation techniques of data-oriented attacks and the applicable defense mechanisms. Then, I address three research problems in program anomaly detection against data-oriented attacks. First, I address the problem of securing control programs in Cyber-Physical Systems (CPS) against data-oriented attacks. I describe a new security methodology that leverages the event-driven nature in characterizing CPS control program behaviors. By enforcing runtime cyber-physical execution semantics, our method detects data-oriented exploits when physical events are inconsistent with the runtime program behaviors. Second, I present a statistical program behavior modeling framework for frequency anomaly detection, where frequency anomaly is the direct consequence of many non-control-data attacks. Specifically, I describe two statistical program behavior models, sFSA and sCFT, at different granularities. Our method combines the local and long-range models to improve the robustness against data-oriented attacks and significantly increase the difficulties that an attack bypasses the anomaly detection system. Third, I focus on defending against data-oriented programming (DOP) attacks using Intel Processor Trace (PT). DOP is a recently proposed advanced technique to construct expressive non-control data exploits. I first demystify the DOP exploitation technique and show its complexity and rich expressiveness. Then, I design and implement the DeDOP anomaly detection system, and demonstrate its detection capability against the real-world ProFTPd DOP attack. / Ph. D. / Memory-corruption vulnerability is one of the most common attack vectors used to compromise computer systems. Such vulnerabilities could lead to serious security problems and would remain an unsolved problem for a long time. This is because low-level memory-unsafe languages (e.g., C/C++) are still in use today for interoperability and speed performance purposes, and remain common sources of security vulnerabilities. Existing memory corruption attacks can be broadly classified into two categories: i) control-flow attacks that corrupt control data (e.g., return address or code pointer) in the memory space to divert the program’s control-flow; and ii) data-oriented attacks that target at manipulating non-control data to alter a program’s benign behaviors without violating its control-flow integrity. Though data-oriented attacks are known for a long time, the threats have not been adequately addressed due to the fact that most previous defense mechanisms focus on preventing control-flow exploits. As launching a control-flow attack becomes increasingly difficult due to many deployed defenses against control-flow hijacking, data-oriented attacks are considered an appealing attack technique for system compromise, including the emerging embedded control systems. To counter data-oriented attacks, mitigation techniques such as memory safety enforcement and data randomization can be applied in different stages over the course of an attack. However, attacks are still possible because currently deployed defenses can be bypassed. This dissertation explores the possibility of defeating data-oriented attacks through external monitoring using program anomaly detection techniques. I start with a systematization of current knowledge about exploitation techniques of data-oriented attacks and the applicable defense mechanisms. Then, I address three research problems in program anomaly detection against data-oriented attacks. First, I address the problem of securing control programs in Cyber-Physical Systems (CPS) against data-oriented attacks. The key idea is to detect subtle data-oriented exploits in CPS when physical events are inconsistent with the runtime program behaviors. Second, I present a statistical program behavior modeling framework for frequency anomaly detection, where frequency anomaly is often consequences of many non-control-data attacks. Our method combines the local and long-range models to improve the robustness against data-oriented attacks and significantly increase the difficulties that an attack bypasses the anomaly detection system. Third, I focus on defending against data-oriented programming (DOP) attacks using Intel Processor Trace (PT). I design and implement the DEDOP anomaly detection system, and demonstrate its detection capability against the real-world DOP attack.

Page generated in 0.0793 seconds