• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation sous contraintes par intelligence collective auto-adaptative

Khichane, Madjid 26 October 2010 (has links) (PDF)
Dans le cadre de cette thèse, nous nous sommes intéressés à la mise en œuvre d'algorithmes auto-adaptatifs d'Intelligence Collective pour la résolution de problèmes d'optimisation modélisés dans un langage de Programmation par contraintes (PPC). Nous avons porté une attention particulière à la famille d'algorithmes de type " Ant Colony Optimization " (ACO). Nous avons développé trois contributions, à savoir : (1) Intégration des algorithmes de type ACO dans un langage de programmation par contraintes pour la résolution de problèmes de satisfaction de contraintes; (2) Proposition d'un algorithme hybride et générique où ACO est couplé à une approche complète pour résoudre des problèmes d'optimisation combinatoires (3) Proposition d'une stratégie capable d'adapter dynamiquement les paramètres de ACO.
2

Optimisation sous contraintes par intelligence collective auto-adaptative / Strong combination of ant colony optimization with constraint programming optimization

Khichane, Madjid 26 October 2010 (has links)
Dans le cadre de cette thèse, nous nous sommes intéressés à la mise en œuvre d'algorithmes auto-adaptatifs d'Intelligence Collective pour la résolution de problèmes d'optimisation modélisés dans un langage de Programmation par contraintes (PPC). Nous avons porté une attention particulière à la famille d'algorithmes de type « Ant Colony Optimization » (ACO). Nous avons développé trois contributions, à savoir : (1) Intégration des algorithmes de type ACO dans un langage de programmation par contraintes pour la résolution de problèmes de satisfaction de contraintes; (2) Proposition d'un algorithme hybride et générique où ACO est couplé à une approche complète pour résoudre des problèmes d'optimisation combinatoires (3) Proposition d'une stratégie capable d'adapter dynamiquement les paramètres de ACO. / In this thesis, we focused on the implementation of self-adaptive algorithms for solving optimization problems modeled in a Constraint Programming (CP) language. We focus on to the Ant Colony Optimization (ACO) algorithms. We have developed three contributions, namely: (1) Integration of ACO algorithms in a constraint programming language for solving constraint satisfaction problems, (2) Proposal of a generic hybrid algorithm which combines ACO and CP approach to solving combinatorial optimization problems (3) Proposal of a strategy to dynamically adjust the parameters of ACO.

Page generated in 0.1425 seconds