• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deciphering the immune response to respiratory pathogens - Role of programmed death-ligand 1 / Déchiffrer la réponse immunitaire contre les pathogènes respiratoires - Rôle de programmed death ligand 1

Stephen Victor, Emmanuel 22 September 2016 (has links)
Les pathogènes respiratoires sont parmi les causes majeures de décès dans le monde entier. Déchiffrer les mécanismes d'évasion immune employés par les pathogènes est essentiel pour le développement de stratégies thérapeutiques contre les pathogènes respiratoires. Dans ce contexte, la vole de signalisation PDL-1 (programmed death ligand 1)-PD-1 (programmed death 1) a été impliquée dans l'évasion immune par les cellules tumorales et des virus. Par conséquent, j'ai voulu étudier le rôle de la voie PD-L1 dans la modulation de la réponse immunitaire contre le Mycobacterium tuberculosis et l'Aspergillus fumigatus. J'ai trouvé que l'α-(1,3)-glucan dérivé de l'A. fumigatus activait les cellules dendritiques (CDs) ; la maturation des CDs était partiellement dépendante du Toll like receptor (TLR)-2. L'analyse de la polarisation des cellules T CD4+ a révélé que les CDs éduquées par l'α-(1,3)-glucan induisent la génération de cellules T régulatrices (Treg) CD4+ CD25+FoxP3+, ceci étant en partie lié à l'expression de PD-L1 sur les CDs. De façon importante, le blocage de PD-L1 sur les CDs augmente la sécrétion d'IFN-γ sans moduler la réponse Th17. De manière similaire, PD-L1 induit par M. tuberculosis freine la réponse Th1 sans moduler la réponse Th17. L'analyse des voies de signalisation en aval a indiqué que la voie sonic hedgehog (SHH) en réponse au mycobacterium médiait l'induction de PD-L1 en inhibant des microARNs spécifiques, miR-324-5p et miR-338-5p qui ciblent PD-L1. De plus, SHH induit la cyclooxygénase (COX)-2 qui catalyse la synthèse de la prostaglandine E2 (PGE2) qui agit en synergie avec PD-L1 pour coordonner l'expansion des Treg. / SummaryPulmonary infections caused by respiratory pathogens are among the major causes of death worldwide. The outcome of infection depends on the ability of the host to respond to the challenge posed by the pathogens. Of note, the host needs to sense the pathogen, mount an efficient immune response and finally clear the ensuing inflammatory response to avoid tissue damage. In this context pathogens have adapted numerous strategies that hijack the host mechanisms to dampen the immune response and as a consequence causing infection. The programmed death-ligand 1 (PD-L1) – programmed death 1 (PD-1) pathway is a key pathway involved in mediating self-tolerance thereby maintaining homeostasis. Elegant reports have demonstrated that the PD-L1 – PD-1 pathway is exploited by cancer cells and viruses as an immune evasion mechanism to suppress effector T cell responses. Thus, I aimed at investigating the role of PD-L1 pathway in modulating immune response to Mycobacterium tuberculosis a bacterial pathogen and Aspergillus fumigatus an opportunistic fungal pathogen. I found that A. fumigatus-derived α-(1,3)-glucan induces maturation of DCs and secretion of various immunoregulatory cytokines that was partially dependant on Toll like receptor (TLR)-2. Analysis of CD4+ T cell polarization revealed that α-(1,3)-glucan-educated DCs induced CD4+ CD25+FoxP3+ regulatory T cell (Treg) generation that was in part dependent on the PD-L1 expression on DCs. Importantly, blocking PD-L1 on DCs enhanced IFN-γ secretion without modulating Th17 response. Similarly, M. tuberculosis induced PD-L1 dampened Th1 response without modulating Th17 response. Analysis of downstream signalling pathways indicated that, mycobacterium-responsive sonic hedgehog (SHH) mediated PD-L1 induction by inhibiting specific microRNAs, miR-324-5p and miR-338-5p that target PD-L1. Additionally, SHH induced cyclooxygenase (COX)-2 catalysed the synthesis of prostaglandin E2 (PGE2) that synergize with PD-L1 to coordinate the expansion of Tregs. My results thus demonstrate that respiratory pathogens either directly or by harbouring imuunoregulatory antigens highjack the PD-L1 pathway to suppress the protective Th1 response and orchestrate Treg generation without modulating Th17 response. Importantly, my results provide a rational for exploiting immunotherapeutic approaches that target PD-1 – PD-L1 co-stimulatory axis to restore effector T cell response to respiratory pathogens.
2

High programmed death ligand 1 expression in carcinomatous components predicts a poor prognosis in pulmonary pleomorphic carcinoma / 肺多形癌の上皮成分におけるプログラム細胞死リガンド1(PD-L1)高発現は予後不良を予測する

Noguchi, Misa 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23788号 / 医博第4834号 / 新制||医||1057(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 武藤 学, 教授 小濱 和貴, 教授 生田 宏一 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
3

The role of the secretory pathway and cell surface proteolysis in the regulation of the aggressiveness of breast cancer cells

Wise, Randi January 1900 (has links)
Doctor of Philosophy / Biochemistry and Molecular Biophysics Interdepartmental Program / Anna Zolkiewska / Cancer cells exploit key signaling pathways in order to survive, proliferate, and metastasize. Understanding the intricacies of the aberrant signaling in cancer may provide new insight into how to therapeutically target tumor cells. The goal of my research was to explore the role of two modulators of transmembrane signaling, the secretory pathway and cell surface proteolysis, in the aggressiveness of breast cancer cells. To study the role of the secretory pathway, I focused on the family of endoplasmic reticulum (ER) chaperones. I found that several ER chaperones were upregulated in breast cancer cells grown under anchorage-independent conditions as mammospheres versus those grown under adherent conditions. Furthermore, certain members of the protein disulfide isomerase (PDI) family were consistently upregulated in two different cell lines at both the mRNA and protein levels. Knocking down these PDIs decreased the ability of the cells to form mammospheres. I demonstrated that the requirement for PDI chaperones in mammosphere growth is likely due to an increased flux of extracellular matrix (ECM) components through the ER. Next, I examined the role of cell surface proteolysis in modulating the aggressiveness of breast cancer cells. Cell-surface metalloproteases release soluble growth factors from cells and activate the corresponding growth factor receptors. I determined that specific metalloproteases (ADAM9 or ADAM12), modulate the activation of Epidermal Growth Factor Receptor (EGFR). I demonstrated that EGFR activation enhances the CD44⁺/CD24⁻ cell surface marker profile, which is a measure of cancer cell aggressiveness. I found that the MEK/ERK pathway, which is a downstream effector of EGFR activation, modulates the CD44⁺/CD24⁻ phenotype. When DUSP4, a negative regulator of the MEK/ERK pathway, is lost, activation of EGFR by metalloproteases no longer plays a significant role in cancer cell aggressiveness. This indicates that the ligand dependent activation of the EGFR/MEK/ERK pathway is a critical step in DUSP4-positive aggressive breast cancer. Finally, I examined the importance of metalloproteases in the regulation of Programmed-death ligand 1 (PD-L1), a transmembrane protein expressed by some cancer cells that plays a major role in suppressing the immune system. I demonstrated that cell-surface metalloproteases have the ability to cleave PD-L1 and release its receptor-binding domain to the extracellular environment. Collectively, these data indicate that (a) ER chaperones support anchorage-independent cell growth, (b) metalloproteases are important in regulation of an aggressive phenotype through the EGFR/MEK/ERK pathway, and (c) metalloproteases cleave PD-L1, a key component of immunosuppression in cancer.
4

Inhibitors of the PD1/PD-L1 interaction: missteps, mechanisms and mysteries

Hanley, Ronan 12 March 2018 (has links)
The interactions of tumours with normal host tissue are key determinants of cancer growth and progression. The ability or inability of the patient’s immune system to mount a response against the tumour is tightly correlated with prognosis. One of the ways tumours avoid detection and elimination by the immune system is by expressing programmed death ligand 1 (PD-L1). PD-L1 binds to its receptor programmed death 1 (PD1) on T cells, inhibiting T cell responsiveness to antigenic stimuli. Blockade of the PD1/PD-L1 pathway removes this negative signal and restores anti-tumour immunity. While this blockade of PD1/PD-L1 is well established through the use of antibodies, small molecule inhibitors of PD1/PD-L1 are relatively unknown. We employed in silico docking in order to find small molecules capable of binding to either PD1 or PD-L1, and the highest-ranked compounds were tested in biophysical assays for their ability to inhibit PD1/PD-L1 binding. A thermal shift assay identified a pyrazole compound as a possible binding partner for PD-L1, but follow-up assays showed that it had no effect on the PD1/PD-L1 interaction and that its apparent binding was probably due to aggregation. An ELISA assay identified a tryptophan diamine compound as an apparent stabilizer of the PD1/PD-L1 interaction. However this compound, too, was later identified to be inactive in orthogonal assays. We identified a family of salicylic acid derivatives that interfered with TR-FRET measurements – an unusual observation, given that TR-FRET is touted as being insensitive to most mechanisms of compound interference. This discovery should help other fragment- screening groups identify false positives more easily. We also probed the mechanism of inhibition of a recently disclosed family of small molecule PD1/PD-L1 inhibitors from Bristol-Myers Squibb. Concurrently with other groups, we used protein NMR, size exclusion chromatography, and SPR to determine that the compounds were inducing homodimerization through the PD1-binding face of PD-L1. Furthermore, using cellular crosslinking and live cell imaging, we showed that these first generation inhibitors are fairly ineffective at inhibiting this interaction on the cell surface. More potent compounds will be needed to see any cellular effect from this mechanism of action. / Graduate / 2019-02-15
5

PD-L1 on mast cells suppresses effector CD8⁺ T-cell activation in the skin in murine contact hypersensitivity / 肥満細胞のPD-L1はマウス接触過敏反応における皮膚でのエフェクターCD8陽性T細胞の活性を抑制する

Hirano, Tomoko 23 May 2023 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13557号 / 論医博第2286号 / 新制||医||1067(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 生田 宏一, 教授 伊藤 能永, 教授 森信 暁雄 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
6

Immune modulation mechanisms of porcine circovirus type 2

Richmond, Owen Benjamin 29 June 2015 (has links)
Porcine circovirus associated disease (PCVAD) is an umbrella term for a multitude of diseases and syndromes that have a negative impact on the health and economics of pig production operations throughout the world. Porcine circovirus type 2 is the causative agent of PCVAD; however the presence of PCV2 alone is rarely enough to cause clinical disease. In order for the full development of PCVAD the presence of a co-infecting pathogen is required. The mechanisms by which co-infection leads to disease remain ongoing areas of research, but it is thought that host immune modulations by PCV2 or a co-infecting pathogen are critical in the pathogenesis of PCVAD. In the first study of this dissertation the ability of PCV2 to induce regulatory T-cells (Tregs) and alter cytokine production was evaluated in vivo. The addition of PCV2 to a multiple viral challenge resulted in a significant increase in Tregs. Levels of IL-10 and IFN-γ were also found to be altered when PCV2 was added to a multiple viral challenge. In further experiments, monocyte derived dendritic cells (MoDC) were infected with different combinations and strains of PCV2 and PRRSV in vitro and evaluated for expression levels of programmed death ligand-1 (PD-L1), IL-10, CD86, swine leukocyte antigen-1 (SLA-1), and swine leukocyte antigen-2 (SLA-2). Expression levels of PD-L1 were significantly increased in PCV2 and PRRSV co-infected MoDCs. SLA-1, SLA-2, and CD86 expression levels were significantly decreased in the MoDC treatment groups containing both PCV2 and virulent stains of PRRSV. MoDC IL-10 expression was significantly increased by PCV2 and virulent strains of PRRSV co-infection. Finally, we investigated the role of the PD-L1/programmed death ligand-1 (PD-1) axis in porcine lymphocyte anergy, apoptosis, and the induction of Tregs. Lymphocyte populations with normal PD-1 expression had significantly higher percentages of anergic and apoptotic lymphocytes, and CD4+CD25HighFoxP3+ Tregs when compared to a PD-1 deficient lymphocyte population. The findings from these studies indicate host immune modulation by PCV2 in vivo and the development of a regulatory phenotype of dendritic cell following PCV2/PRRSV co-infections in vitro that may contribute to a dysfunctional adaptive immune response and the overall pathogenesis of PCVAD. / Ph. D.

Page generated in 0.0559 seconds