Spelling suggestions: "subject:"5project saving"" "subject:"3kproject saving""
1 |
Sustaining compressed air DSM project savings using an air leakage management system / A.J.M. van TonderVan Tonder, Adriaan Jacobus Marthinus January 2010 (has links)
Unreliable and unsustainable electricity supply has been experienced in South Africa since
2007. Eskom implemented Demand Side Management (DSM) as a short-term solution to
alleviate this problem. Several compressed-air DSM projects were implemented to help reduce
the strain on the electrical network.
Compressed air is an integral part of production in deep-level mining, and is extensively utilised.
Problems are encountered with the effective management and repairing of leaks, since the
majority of mines have little to no procedures in place for leak management. Awareness of the
condition of the compressed-air system and leaks needed to be created at management level in
order to achieve the best results.
The purpose of this study is to investigate the effect of proper leak management on
compressed-air systems in the mining industry. Peak-clipping DSM projects implemented in the
mining industry were used for evaluation of results. Contribution to the sustainability of
compressed-air DSM projects savings through successful leak documentation was the prime
focus of this study. This was achieved through the development of a Compressed Air Leakage
Documentation System (CALDS).
This entailed the electronic field-data capture and record keeping of field data, using rugged
PDA devices suitable for the extreme environmental conditions encountered in deep-level
mining. Report generation on the status of detected leaks created awareness of compressedair-
system performance and leak-repair tracking at management level. Audible detection was
sufficient for this study, since the focus was on the larger more-severe leaks. Leaks were
expressed in monetary terms to indicate the severity.
It was found that successful management of leaks could contribute to an increase of as much
as 85% in project savings. The results also showed that creating awareness through
documentation of leaks, and the effect this has on the system, resulted in regular repairing of these leaks. Sustainability of projects was maintained during an evaluation period of ten
months, with projects achieving on average 125% of target savings.
The study showed that effective reporting on compressed-air leaks resulted in increased system
efficiency and sustainable DSM project savings. It was also seen that leak detection by outsourced
companies did not necessarily result in financial savings. When the mine took
responsibility for its own leak detection and repairs, significant savings were realised. / Thesis (M.Ing. (Electrical and Electronic Engineering))--North-West University, Potchefstroom Campus, 2011.
|
2 |
Sustaining compressed air DSM project savings using an air leakage management system / A.J.M. van TonderVan Tonder, Adriaan Jacobus Marthinus January 2010 (has links)
Unreliable and unsustainable electricity supply has been experienced in South Africa since
2007. Eskom implemented Demand Side Management (DSM) as a short-term solution to
alleviate this problem. Several compressed-air DSM projects were implemented to help reduce
the strain on the electrical network.
Compressed air is an integral part of production in deep-level mining, and is extensively utilised.
Problems are encountered with the effective management and repairing of leaks, since the
majority of mines have little to no procedures in place for leak management. Awareness of the
condition of the compressed-air system and leaks needed to be created at management level in
order to achieve the best results.
The purpose of this study is to investigate the effect of proper leak management on
compressed-air systems in the mining industry. Peak-clipping DSM projects implemented in the
mining industry were used for evaluation of results. Contribution to the sustainability of
compressed-air DSM projects savings through successful leak documentation was the prime
focus of this study. This was achieved through the development of a Compressed Air Leakage
Documentation System (CALDS).
This entailed the electronic field-data capture and record keeping of field data, using rugged
PDA devices suitable for the extreme environmental conditions encountered in deep-level
mining. Report generation on the status of detected leaks created awareness of compressedair-
system performance and leak-repair tracking at management level. Audible detection was
sufficient for this study, since the focus was on the larger more-severe leaks. Leaks were
expressed in monetary terms to indicate the severity.
It was found that successful management of leaks could contribute to an increase of as much
as 85% in project savings. The results also showed that creating awareness through
documentation of leaks, and the effect this has on the system, resulted in regular repairing of these leaks. Sustainability of projects was maintained during an evaluation period of ten
months, with projects achieving on average 125% of target savings.
The study showed that effective reporting on compressed-air leaks resulted in increased system
efficiency and sustainable DSM project savings. It was also seen that leak detection by outsourced
companies did not necessarily result in financial savings. When the mine took
responsibility for its own leak detection and repairs, significant savings were realised. / Thesis (M.Ing. (Electrical and Electronic Engineering))--North-West University, Potchefstroom Campus, 2011.
|
Page generated in 0.0779 seconds