• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Construction, expression, and purification of soluble CD16 in bacteria

Sinotte, Christopher Matthew 24 May 2006 (has links)
CD16 is a physiologically essential Fc and #947; receptor III as either a single- pass transmembrane protein (CD16A) or as a glycosylated phosphatidylinositol (GPI) anchored protein (CD16B) on the surface of immune cells that have been implicated in many autoimmune and immune complex-mediated diseases. Its functions include binding and clearing antibody (IgG) coated foreign pathogens, receptor-mediated phagocytosis, and triggering antibody dependent cellular cytotoxicity. It is well established that these functions depend on protein-protein interaction between CD16 and the Fc domain of IgG. However, the molecular details of CD16-IgG interactions are less well defined, but are essential to developing therapeutic compounds to treat many autoimmune and IC diseases. Stable mammalian cell lines expressing wild-type CD16 isoforms and site-specific mutants, including extracellular soluble fragments of CD16 have been established. Soluble forms of wild type CD16A and these CD16 mutants were expressed in a bacterial pathway in order to amass sufficient quantities for x-ray crystallographic studies. The soluble portions of wild-type CD16A and several site-specific CD16A and CD16B mutants were constructed by PCR amplification and ligation with a pET vector. The proteins were expressed in a prokaryotic pathway, BL21 AI, for 8-10 hours and lysed to obtain inclusion bodies. A hand-held sonicator was used to wash the inclusion bodies, while a Urea solution separated and dissolved the proteins. The target proteins were then refolded by rapid dilution, concentrated with a stir cell, and purified. Wild type sCD16A and four site specific mutants were constructed with good sequencing, while wild type sCD16A, sCD16A F176V, and sCD16A G147D were expressed and refolded to optimal levels. X-ray crystallographic data has been collected from sCD16A F176V as a result of these studies and crystals are currently being grown from wild type sCD16A and sCD16A G147D.
2

Oxidace ellipticinu lidskými cytochromy P450 exprimovanými v prokaryotním a eukaryotním systému / Oxidation of ellipticine by human cytochromes P450 expressed in prokaryotic and eukaryotic systems

Vejvodová, Lucie January 2013 (has links)
Ellipticine is an alkaloid with antitumor activity, whose mechanism of action is based on intercalation into DNA, inhibition of topoisomerase II and formation of covalent adducts with DNA, after its enzymatic activation by cytochromes P450 and/or peroxidases. Ellipticine is oxidized by cytochromes P450 to form up to five metabolites (7-hydroxy-, 9-hydroxy, 12- hydroxy-, 13-hydroxyellipticine and N2 -oxide ellipticine). 9-Hydroxy- and 7- hydroxyellipticine are considered to be detoxification metabolites, whereas 12-hydroxy-, 13- hydroxyellipticine and N2 -oxide of ellipticine are considered as activation metabolites, which are responsible for formation of covalent DNA adducts. The aim of this thesis was to examine the efficiency of human recombinant cytochromes P450 expressed in eukaryotic (SupersomesTM ) and two prokaryotic expression systems (Bactosomes) in oxidation of ellipticine. Cytochromes P450 expressed in prokaryotic systems differed in the amounts of "coexpressed" NADPH:CYP reductase. The resulting ellipticine metabolites were analyzed by HPLC. The results obtained in this thesis demonstrate that human cytochromes P450 2C9/2D6/2C19 expressed in prokaryotic or eukaryotic systems oxidize ellipticine to form up to four metabolites: 9-hydroxy-, 12-hydroxy-, 13-hydroxyellipticine and N2 -oxide...
3

Aktivita cytochromů P450 1A1, 1A2 a 3A4 exprimovaných v eukaryotních a prokaryotních systémech / Activity of cytochromes P450 1A1, 1A2 and 3A4 expressed in eukaryotic and prokaryotic systems

Indra, Radek January 2011 (has links)
Cytochromes P450 (CYP) are a superfamily of heme proteins distributed widely throughout nature, involved in metabolism of a broad variety of substrates and catalyzing a variety of interesting chemical reactions. They play a central role in metabolism of chemotherapeutic agents. Several prodrug antitumor agents have been found as CYP substrates. Ellipticine, an alkaloid found in Apocynaceae plants, is an example of such type of pro-drug. Here, we investigate the efficiencies of human recombinant CYPs expressed in eukaryotic and prokaryotic expression systems, namely in SupersomesTM , microsomes isolated from insect cells transfected with baculovirus construct containing cDNA of human CYP1A1, 1A2 and 3A4 with NADPH:CYP reductase or in Bactosomes, the membrane fraction of E. coli transfected with cDNA of the same human CYP enzymes and NADPH:CYP reductase to oxidize their marker substrates and ellipticine. Cytochrome b5, an aditional component of the mixed function oxidase system, which metabolize xenobiotics was also expressed in some of the systems. The results found in this work demonstrate that human CYP1A1, 1A2 or 3A4 expressed in both eukaryotic and procaryotic systems oxidize their marker substrates (EROD for CYP1A1/2, MROD for CYP1A2 and testosterone 6β-hydroxylation for CYP3A4). They also oxidize...

Page generated in 0.0949 seconds