• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1118
  • 548
  • 420
  • 178
  • 111
  • 49
  • 34
  • 28
  • 22
  • 20
  • 18
  • 18
  • 17
  • 12
  • 12
  • Tagged with
  • 3103
  • 600
  • 408
  • 279
  • 269
  • 253
  • 251
  • 205
  • 204
  • 198
  • 196
  • 182
  • 172
  • 160
  • 159
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Elasto-viscoplastic wave propagation in single crystallographic silicon thin structure

Liu, Li 16 August 2006 (has links)
The thesis provides the required knowledge base for establishing Laser Induced Stress Wave Thermometry (LISWT) as a viable alternative to current infrared technologies for temperature measurement up to 1000°C with ±1°C resolution. The need for a non-contact, high resolution thermal measurement methodology applicable to Rapid Thermal Processing (RTP) motivated the work. A stress wave propagation model was developed and a complex, temperature-dependent elasto-viscoplastic constitutive law was identified. A stagger-grid finite difference scheme was followed to approximate the solution field subject to temperature and plate thickness variations. Extensive numerical experiments were conducted to identify the proper time and spatial steps. A Gabor wavelet transform scheme was also employed for the extraction of wafer thermal and geometric information from exploring wave attenuation and dispersion. Researched results concluded that wave group velocity is a nonlinear function of temperature. Nonlinearity became more prominent at high temperatures and low frequencies. As such, for LISWT to achieve better thermal resolution at high temperatures, low frequency components of the induced stress wave should be exploited. The results also showed that the influence of temperature on attenuation is relatively small. It is not recommended to use attenuation for resolving temperature variation as small as several degrees Celsius. In addition to temperature, geometry also was found to have an impact on wave dispersion and attenuation. The results showed that the influence of thickness on wave velocity is significant, thus suggesting that for LISWT to achieve high temperature resolution, wafer thickness must be accurately calibrated in order to eliminate all possible errors introduced by thickness variation. The study established the basic framework for LISWT to be applicable to silicon wafer RTP at elevated temperatures. The model and methods developed for the course of the research can be easily adapted to account for other nondestructive evaluation applications involving the use of surface, plate or bulk waves for material characterization and thermal profiling.
132

Stochastic Modelling of a Collection of Correlated Sparse Signals and its Recovery via Belief Propagation Methods

Lee, Jefferson 14 December 2011 (has links)
The field of compressive sensing deals with the recovery of a sparse signal from a small set of measurements or linear projections of the signal. In this thesis, we introduce a stochastic framework that allows a collection of correlated sparse signals to be recovered by exploiting both intra and inter signal correlation. Our approach differs from others by not assuming that the collection of sparse signals have a common support or a common component; in some cases, this assumption does not hold true. Imagine a simplified cognitive radio problem, where users can send a single tone (sine-wave) in a finite number of frequencies; it is desired to find the used frequencies over a large area (creation of a radio map). This is a sparse problem; however, as we move spatially, the occuppied frequencies change, thus voiding the assumption of a common support/component. Our solution to multi sparse signal recovery addresses this problem, where signals that are close geographically are highly correlated and their support gradually changes as the distance between signals grow. Our approach consists of the creation of a probabilistic model that accounts for inter and intra signal correlation and then using belief propagation to calculate the posterior distribution of the signals and perform recovery.
133

Stochastic Modelling of a Collection of Correlated Sparse Signals and its Recovery via Belief Propagation Methods

Lee, Jefferson 14 December 2011 (has links)
The field of compressive sensing deals with the recovery of a sparse signal from a small set of measurements or linear projections of the signal. In this thesis, we introduce a stochastic framework that allows a collection of correlated sparse signals to be recovered by exploiting both intra and inter signal correlation. Our approach differs from others by not assuming that the collection of sparse signals have a common support or a common component; in some cases, this assumption does not hold true. Imagine a simplified cognitive radio problem, where users can send a single tone (sine-wave) in a finite number of frequencies; it is desired to find the used frequencies over a large area (creation of a radio map). This is a sparse problem; however, as we move spatially, the occuppied frequencies change, thus voiding the assumption of a common support/component. Our solution to multi sparse signal recovery addresses this problem, where signals that are close geographically are highly correlated and their support gradually changes as the distance between signals grow. Our approach consists of the creation of a probabilistic model that accounts for inter and intra signal correlation and then using belief propagation to calculate the posterior distribution of the signals and perform recovery.
134

Guided Wave Propagation in Tubular Section with Multi-Layered Viscoelastic Coating

Kuo, Chi-Wei 1982- 14 March 2013 (has links)
Three kinds of propagating waves physically admissible in a tubular section are derived to establish their dispersion characteristics in response to the presence of multi-layered viscoelastic coatings. One is the longitudinal wave that propagates in the axial direction. The other two are shear and longitudinal waves along the circumferential direction. To characterize the hollow cylinder with coating layers, wave dispersion and attenuation are studied using the “global matrix” technique. Since each layer is considered to be perfectly bonded to each other, displacement and strain continuity are imposed as the interfacial boundary conditions. Viscoelastic coating materials such as bitumen and epoxy serve to improve pipeline reliability, but they also dampen and dissipate wave energy. The viscoelastic materials are studied as well. By replacing the real material constants with complex material constants in the characteristic equation, the impact of the viscoelastic coatings on wave dispersion is established. Bisection method is followed to find the real and complex roots of the three characteristic equations derived. Roots thus obtained are manipulated to allow the phase velocity and attenuation dispersion to be plotted against frequency. The dispersion of phase velocity and wave attenuation for coated pipes are evaluated against a baseline model which is the bare, uncoated tubing to establish the propagation characteristics of the guided shear and longitudinal waves in the presence of multiple coating layers. The effects of increasing attenuation parameter and coating thickness are also investigated.
135

none

Tung, Chia-Jung 05 September 2003 (has links)
none
136

Observation of Dislocation Morphologies in Front of Fatigue Crack Tips of IF Steel

Huang, Wei-Zheng 06 August 2004 (has links)
IF Steel to be used in this thesis which only have 50ppm carbon is approach Iron. It to be part of BCC. Because BCC material have much slip system when increase the cycle will induce to create multiple slip system. The dislocation structure often to become cell. We observation the same result of SEM and TEM in low cycle fatigue. The cell size is small in high plastic strain amplitude. The cell size is big in low strain amplitude. The difference of dislocation structures in front of crack tip which obtained under propagation rates o f 10-4, 10-5, 10-6 and 10-7 mm/cycle is the volume percentage occupied by the dislocation structures viz. misorientation cell, cell, wall, PSBs.
137

Highly time-resolved measurement of quench inception and propagation in ac superconducting wires

Hayakawa, N., Iwahana, F., Chigusa, S., Okubo, H. 03 1900 (has links)
No description available.
138

Elasto-viscoplastic wave propagation in single crystallographic silicon thin structure

Liu, Li 16 August 2006 (has links)
The thesis provides the required knowledge base for establishing Laser Induced Stress Wave Thermometry (LISWT) as a viable alternative to current infrared technologies for temperature measurement up to 1000°C with ±1°C resolution. The need for a non-contact, high resolution thermal measurement methodology applicable to Rapid Thermal Processing (RTP) motivated the work. A stress wave propagation model was developed and a complex, temperature-dependent elasto-viscoplastic constitutive law was identified. A stagger-grid finite difference scheme was followed to approximate the solution field subject to temperature and plate thickness variations. Extensive numerical experiments were conducted to identify the proper time and spatial steps. A Gabor wavelet transform scheme was also employed for the extraction of wafer thermal and geometric information from exploring wave attenuation and dispersion. Researched results concluded that wave group velocity is a nonlinear function of temperature. Nonlinearity became more prominent at high temperatures and low frequencies. As such, for LISWT to achieve better thermal resolution at high temperatures, low frequency components of the induced stress wave should be exploited. The results also showed that the influence of temperature on attenuation is relatively small. It is not recommended to use attenuation for resolving temperature variation as small as several degrees Celsius. In addition to temperature, geometry also was found to have an impact on wave dispersion and attenuation. The results showed that the influence of thickness on wave velocity is significant, thus suggesting that for LISWT to achieve high temperature resolution, wafer thickness must be accurately calibrated in order to eliminate all possible errors introduced by thickness variation. The study established the basic framework for LISWT to be applicable to silicon wafer RTP at elevated temperatures. The model and methods developed for the course of the research can be easily adapted to account for other nondestructive evaluation applications involving the use of surface, plate or bulk waves for material characterization and thermal profiling.
139

Wave propagation in saturated porous media

Van der Kogel, Hans. Scott, Ronald F. January 1977 (has links)
Thesis (Ph. D.)--California Institute of Technology, 1977. UM #77-24,050. / Advisor names found in the Acknowledgments pages of the thesis. Title from home page (viewed 03/09/2010). Includes bibliographical references.
140

Adventitious root formation in Backhousia citriodora F. Muell : the stock plant barriers /

Kibbler, Harry. January 2002 (has links) (PDF)
Thesis (Ph. D.)--University of Queensland, 2002. / Includes bibliographical references.

Page generated in 0.1479 seconds