Spelling suggestions: "subject:"apropagation anda morphology"" "subject:"apropagation ando morphology""
1 |
Etude des effets de la solidification sur les intrusions de type sill : application à la croissance plutonique / Solidification effects on sill intrusion : application to pluton growthChanceaux, Lola 14 October 2016 (has links)
Il est maintenant avéré que la plupart des grands corps magmatiques sont construits par amalgamation d’intrusions plus petites. Ces incréments sont pour la plupart des sills, qui sont considérés comme les briques élémentaires des corps magmatiques plus grands. Malgré de nombreuses études, certains aspects de la mise en place des plutons sont encore mal compris : aucun modèle ne contraint leur taille et on ne sait toujours pas comment l’encaissant se déforme lors de leur mise en place incrémentale. La taille des réservoirs magmatiques, construits par injections répétées de magma, dépend de la taille des sills qui le constituent, et notamment de l’extension latérale de ces sills. Cette extension latérale pourrait être contrôlée par la solidification du magma lors de la mise en place du sill. Des expériences analogiques de laboratoire ont donc été réalisées afin de quantifier les effets de la solidification sur 1) la formation des sills et 2) la dynamique de propagation, la géométrie et la taille des sills. De l’huile végétale chaude, analogue du magma se solidifiant lors de sa propagation, est injectée dans un solide de gélatine plus froid, analogue des roches encaissantes. Le premier set d’expérience montre qu’avec l’augmentation des effets de la solidification, différents types d’intrusions sont observés (dykes traversant l’interface, sills et dykes stoppés à l’interface). Contrairement à des expériences où le refroidissement ne peut pas affecter la formation des sills, la présence d’une interface a priori mécaniquement favorable n’est donc pas suffisante pour former un sill ; les effets de la solidification restreignent la formation des sills. Le second set d’expérience montre deux comportements extrêmes pour la dynamique de propagation et la géométrie des sills. Quand les effets de la solidification sont faibles, la propagation du sill est continue et leur surface est lisse et régulière. A l’inverse, quand les effets sont forts, la propagation est discontinue et la géométrie des sills est complexe (e.g. lobes et surfaces cordées). De plus, des effets de la solidification plus importants entraînent des surfaces de sills plus faibles : en restreignant l’extension latérale des sills, le refroidissement du magma et la solidification sont susceptibles d’impacter directement la taille des plutons construits par amalgamation de sills. Les grandes déformations induites par la mise en place incrémentale des plutons sont encore mal comprises. Les modèles actuels négligent généralement les rhéologies cassantes et plastiques observées sur le terrain. Dans un premier temps, une mission de terrain dans les Henry Mountains (Utah, USA) a été réalisée afin de mieux comprendre les déformations entourant trois intrusions de tailles différentes : le Maiden Creek Sill, le Trachyte Mesa Laccolith et le Black Mesa Bysmalith. L’intensité de la déformation, la réduction de porosité et l’augmentation de microstructures liées à une forte déformation sont positivement corrélées. L’intensité de ces paramètres augmente à l’approche du contact encaissant / intrusion, et est plus marquée pour les contacts latéraux que pour les contacts supérieurs et inférieurs. Plus la taille de l’intrusion est importante, plus l’encaissant situé sur les côtés est déformé sur une grande distance. En revanche, la déformation observée au sommet du bysmalite est peu étendue, ce qui est dû à la présence d’une faille ayant permis une translation de l’encaissant plutôt que sa déformation importante. Dans un deuxième temps, des expériences analogiques de laboratoire multi-injections ont été effectuées pour essayer de mieux caractériser ces déformations. Ces expériences permettent d’observer la création d’un corps principal constitué de plusieurs sills empilés les uns sur les autres, par sur ou sous-accrétion. L’extension latérale de ce corps principal est fortement contrainte par la taille du premier sill mis en place. (...) / It is now accepted that the majority of large magma bodies is constructed by amalgamation of smaller magmatic intrusions. These increments are mostly sills and are thought as building blocks for larger magma bodies. Despite numerous studies, some aspects of their emplacement are still misunderstood: no model exists to constrain the size of plutons and we still do not know how the host rock is deformed during their incremental emplacement. The size of magma reservoirs, constructed by repeating magma pulses, depends on the size of the sills that built them, especially the lateral extend of these sills. This lateral extend could be controlled by solidification during sill emplacement. Analogue experiments have thus been carried out to quantify the effects of magma solidification on 1) sill formation and 2) sill propagation dynamics, geometry and size. Hot liquid vegetable oil, the magma analogue that solidifies during its propagation, is injected in a layered colder gelatine solid, the host rock analogue. A first set of experiments shows that as solidification effects increase, several types of intrusions are observed (dykes passing through the interface, sills, and dykes stopping at the interface). Contrary to isothermal experiments, where cooling cannot affect sill formation, the presence of an interface that would be a priori mechanically favorable is not a sufficient condition for sill formation; solidification effects restrict sill formation. A second set of experiments shows two extreme behaviours for sill propagation dynamics and geometry. When solidification effects are small, the propagation is continuous and sills have a regular and smooth surface. Conversely, when solidification effects are important, sill propagation is discontinuous and their geometry is complex (e.g. lobes and ropy structures). Moreover, higher solidification effects induce smaller sill surfaces; in restricting the lateral extent of sills, magma cooling and solidification are likely to impact directly the size of plutons constructed by amalgamated sills. The large deformations induced by incremental pluton emplacement are still misundurstood. Current models usually neglect brittle and plastic rheology, which are observed in the field. Firstly, a field study has been realized in the Henry Mountains (Utah, USA), in order to better understand the deformations around three intrusions of increasing size: the Maiden Creek Sill, the Trachyte Mesa Laccolith and the Black Mesa Bysmalith. The intensity of the deformation, the porosity reduction and the augmentation of microstructures related to large deformation are positively correlated. The intensity of these parameters increases as one gets closer to the host rock / intrusion contact, and is more important for lateral contacts than upper ones. Larger intrusions induce lateral deformation of the host rock over larger distances. However, the deformation at the top of the bysmalith is localized because of a fault allowing the translation of the host rock instead of an intense deformation. Secondarily, analogue laboratory experiments involving multiple injections have been carried out in order to better understand these deformations. The creation of a main body, made of multiple stacked sills emplaced by under or over-acretion can be observed. The lateral extent of this main body is highly dependant on the size of the first sill emplaced. However, the experimental dificulties and the mechanical properties of the gelatine as a crustal analogue limit the usefulness of these experiments.
|
Page generated in 0.0904 seconds