• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ACTIVE DAMPING OF LCL FILTER RESONANCE FOR A SINGLE PHASE GRID-CONNECTED DISTRIBUTED POWER GENERATION SYSTEM

Zou, BENYU 26 June 2014 (has links)
This Master of Applied Science thesis presents an inverter control system design and implementation with active damping of LCL filter resonance for a single phase grid-connected Distributed Power Generation (DPGS). The focus of the thesis is to actively damp the LCL filter resonance while keeping inverter control variables well regulated. The mathematical model of the LCL filter is analyzed and the filter is designed. Then, a PLL, and a PI compensator in the synchronous reference frame, and a PR compensator in stationary reference frame along a notch filter in cascade are designed and implemented. System level simulation and implementation are conducted. The idea of systematic applying the low loss power conversion topology, effective grid condition detection, grid synchronization, and advanced signal processing theory provides some advantages for single phase grid-connected inverter control design to meet the standard specifications of the interaction between the DPGS and utility grid. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2014-06-26 17:06:03.693
2

A Wide Range and Precise Active and Reactive Power Flow Controller for Fuel Cell Power Conditioning Systems

Park, Sung Yeul 20 August 2009 (has links)
This dissertation aims to present a detailed analysis of the grid voltage disturbance in frequency domain for the current control design in the grid-tie inverter applications and to propose current control techniques in order to minimize its impact and maximize feasibility of the power conditioning system in distributed generations. Because the grid voltage is constantly changing, the inverter must be able to response to it. If the inverter is unable to respond properly, then the grid voltage power comes back to the system and damages the fuel cell power conditioning systems. A closed-loop dynamic model for the current control loop of the grid-tie inverter has been developed. The model explains the structure of the inverter admittance terms. The disturbance of the grid voltages has been analyzed in frequency domain. The admittance compensator has been proposed to prevent the grid voltage effect. The proposed lead-lag current control with admittance compensator transfers current properly without system failure. In order to get rid of the steady-state error of the feedback current, a proportional-resonant controller (PR) has been adopted. A PR control with admittance compensation provides great performance from zero power to full power operation. In addition, active and reactive power flow controller has been proposed based on the PR controller with admittance compensation. The proposed active and reactive power flow control scheme shows a wide range power flow control from pure leading power to pure lagging power. Finally, the proposed controller scheme has been verified its feasibility in three phase grid-tie inverter applications. First of all, a half-bridge grid-tie inverter has been designed with PR controller and admittance compensation. Then three individual grid-tie inverters has been combined and produced three phase current to the three phase grid in either balanced condition or unbalanced condition. The proposed control scheme can be applied not only single phase grid-tie inverter application, but also three phase grid-tie inverter application. This research can be applicable to the photovoltaic PCS as well. This technology makes renewable energy source more plausible for distributed generations. / Ph. D.

Page generated in 0.1165 seconds