• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximate edge 3-coloring of cubic graphs

Gajewar, Amita Surendra 10 July 2008 (has links)
The work in this thesis can be divided into two different parts. In the first part, we suggest an approximate edge 3-coloring polynomial time algorithm for cubic graphs. For any cubic graph with n vertices, using this coloring algorithm, we get an edge 3-coloring with at most n/3 error vertices. In the second part, we study Jim Propp's Rotor-Router model on some non-bipartite graph. We find the difference between the number of chips at vertices after performing a walk on this graph using Propp model and the expected number of chips after a random walk. It is known that for line of integers and d-dimenional grid, this deviation is constant. However, it is also proved that for k-ary infinite trees, for some initial configuration the deviation is no longer a constant and say it is D. We present a similar study on some non-bipartite graph constructed from k-ary infinite trees and conclude that for this graph with the same initial configuration, the deviation is almost (k²)D.

Page generated in 0.0639 seconds