• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A propriedade de Bishop-Phelps-Bollobás / Bishop-Phelps-Bollobás property

Grando, Thiago 20 May 2016 (has links)
Estudamos a propriedade de Bishop-Phelps-Bollobás para operadores, (BP BP ), defi- nidos entre espaços de Banach. Nosso objetivo foi o de procurar pares de espaços de Ba- nach que possuem a BP BP . Assim, provamos que, se o par de espaços de Banach reais L i (c 0 ( i=1 ` 2 ) , Y ) satisfaz a BP BP , onde Y é um espaço de Banach estritamente convexo, então Y é uniformemente convexo. No estudo da BP BP aparecem diversas outras propri- edades, dentre elas destacamos a Approximate hyperplane series property (AHSP ). Nesta direção, considerando (K, (X t ) tK , Z) um espaço de função módulo, provamos que Z satisfaz a AHSP desde que X t satisfaça a AHSP para todo t K. Além disso, sob determinadas condições provamos a recíproca desse resultado. Como consequência, provamos que um es- paço de Banach X tem a AHSP se, e somente se, C 0 (L, X) tem a AHSP , para todo espaço localmente compacto Hausdorff L não-vazio. Concomitantemente ao estudo da BP BP , estudamos técnicas de caracterização dos con- juntos compactos de c 0 . Com essas técnicas, caracterizamos os conjuntos compactos de L i c 0 i=1 ` p , 1 p e do prédual do espaço de Lorentz, d (w, 1). / We study the Bishop-Phelps-Bollobás property for operators, (BP BP ), defined between Banach spaces. Our goal was to look for pairs of Banach spaces satisfying the BP BP . We L i prove that if the pair of real Banach spaces (c 0 ( i=1 ` 2 ) , Y ) satisfy BP BP , where Y is a strictly convex Banach space, then Y is an uniformly convex space. In the study of BP BP , it appears other properties, such the Approximate hyperplane series property for Banach spaces. In this sense, we proved that if (K, (X t ) tK , Z) is function module space, then Z satisfies AHSP if X t has the AHSP for all t K. Moreover, under certain conditions we proved the reciprocal of this result. As a consequence, a Banach space X has the AHSP if, and only if, C 0 (L, X) has the AHSP , for every non-empty locally compact Hausdorff space L. Concomitantly to the study of BP BP , we study techniques of characterization of com- pact sets of c 0 . With these techniques, we characterize the compact sets of the spaces L i c 0 i=1 ` p , 1 p and the predual of Lorentz sequence space d (w, 1).

Page generated in 0.0423 seconds