Spelling suggestions: "subject:"propriedades eletrônicas"" "subject:"propriedades eletronicas""
1 |
Cristais anidros das bases do ADN sÃo semicondutores de Gap largo / Anhydrous cristals of DNA bases are wide gap semiconductorsFrancisco Francinà Maia JÃnior 20 January 2011 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / Guanine (G), adenine (A), cytosine (C), and thymine (T) nucleotide bases are the essential building blocks of DNA (deoxyribonucleic acid), which contains the genetic information used to build living cells. DNA strands are also promising candidates to fabricate molecular nanodevices, since they are stable polymers easy to replicate. Despite the early suggestion of the possibility of using DNA as a nanoscale conductor almost ten years after the elucidation of its helical structure, charge carrier transport through DNA-based structures is still a matter of debate. Here, we present the structural, electronic and optical properties of anhydrous crystals of DNA nucleobases found after DFT (Density Functional Theory) calculations, as well as experimental measurements of optical absorption for powders of these crystals. Experimental measurements of the UV absorption spectra for the anhydrous crystals were carried out on these pellets using a Varian Cary 5000 UV-visible NIR spectrophotometer. The absorption spectrum of the samples was recorded in the wavelength range between 200 and 800 nm (50000-12500 cm-1). The computational simulations of the present work were performed using the CASTEP code, which is based in the DFT approach. The Local Density Approximation (LDA) exchange-correlation potential developed by Ceperley and Alder and parametrized by Perdew and Zunger was adopted as well. With respect to our choice of functional, a note of caution must be made: in anhydrous DNA bases crystals, van der Waals interactions along the molecular stacking axis and hydrogen bonding between molecules in the same stacking plane are relevant to explain their structural features, and it is well known that pure DFT methods are unable to give a good description of dispersive forces. Besides, the LDA approximation is not the best option to provide an accurate account of hydrogen bonds. However, some DFT studies of layered crystals such as graphite as well as guanine hydrated crystals have shown that the LDA gives reasonable values for atomic distances, notwithstanding the limitations of this functional. This and the relatively low cost of LDA computations have motivated us to its adoption instead of more sophisticated (and computationally expensive) means. Guanine and cytosine (adenine and thymine) anhydrous crystals are predicted from the DFT simulations to be direct (indirect) band gap semiconductors, with values 2.68 eV and 3.30 eV (2.83 eV and 3.32 eV), respectively, while the experimentally estimated band gaps we have measured are 3.7 eV and 3.8 eV (3.5 eV and 4.0 eV), in the same order. Our LDA figures for the energy gaps are smaller than experimental values, as expected, and the gaps estimated from the optical absorption measurements presented in this work are in general smaller than experimental data available in the literature (except for guanine). The LDA ordering of increasing band gaps is G < A < C < T, while the ordering of gaps obtained experimentally is not settled: our work finds (from optical absorption measurements) A < G < C < T in contrast with the X-ray measurements, that indicate the energy gap sequence G < C < A < T. For electrons and holes moving along selected hydrogen bonds (parallel to the molecular plane of a given nucleobase), effective masses are in general large, exception made to thymine. When the same electrons move along the pi-stacking axis, however, effective masses stay between 4.0 and 6.3 free electron masses (m0), which suggests that stackings of nucleobases behave like wide gap semiconductors for electrons. The perpendicular transport of holes is also favored for nucleobase stackings without thymine. Finally, the complex dielectric function was calculated for each anydrous DNA base crystal, and a very pronounced anisotropy was observed for polarized incident light in the cases of guanine, adenine, and thymine, but not for cytosine. / As bases nucleotÃdicas guanina (G), adenina (A), citosina (C) e timina (T) sÃo bases nucleotÃdicasos blocos essenciais da molÃcula do Ãcido desoxiribonucleico (ADN), que contÃm a as informaÃÃes genÃticas usadas pelas cÃlulas vivas. Filamentos de ADN sÃo tambÃm candidatos promissores para fabricaÃÃo nanodispositivos moleculares, visto que polÃmeros estÃveis e de fÃcil replicaÃÃo. Apesar desta sugestÃo inicial da possibilidade de usar o ADN como condutor em nanoescala apenas dez anos apÃs a elucidaÃÃo da estrutura helicoidal do ADN, o transporte de portadores de cargas atravÃs de estruturas baseadas no ADN ainda sÃo matÃria de debate. Aqui, sÃo apresentadas as propriedades estruturais, eletrÃnicas e Ãpticas dos cristais anidros das bases do ADN obtidas apÃs cÃlculos baseados na teoria do funcional da densidade (DFT, do inglÃs Density Functional Theory), assim como medidas de absorÃÃo Ãtica para o pà desses cristais. Os experimentos do espectro absorÃÃo UV para os cristais foram realizadas sobre pastilhas usando o espectrometro Varian Cary 5000 UV-visible NIR, considerando o intervalo de 200 and 800 nm (50000-12500 cm-1). Os cÃlculos teÃricos da presente tese foram desenvolvidos usando o pacote CASTEP, baseado na teoria DFT. Na descriÃÃo do potencial de troca e correlaÃÃo, foi utilizada aproximaÃÃo local da densidade (LDA, do inglÃs Local Density Approximation) desenvolvida por Cerpeley e Alder e parametrizado por Perdew e Zunger (CA-PZ). Sobre a escolha do funcional, uma observaÃÃo deve ser feita: nos cristais anidros das bases do ADN, interaÃÃes de van der Waals ao longo do eixo de empilhamento molecular e as ligaÃÃes de hidrogÃnio entre as molÃculas do mesmo plano sÃo relevantes na explicaÃÃo das suas caracterÃsticas, e à bem conhecido que os mÃtodos de DFT puro sÃo incapazes de uma boa descriÃÃo das forÃas dispersivas. AlÃm disso, a aproximaÃÃo LDA nÃo à a melhor opÃÃo para cÃlculos precisos das ligaÃÃes de hidrogÃnio. Entretanto, alguns trabalhos DFT de cristais formados por camadas tais como grafite e o cristal hidratado da guanina mostraram que o funcional LDA fornece valores razoÃveis para as distÃncias atÃmicas, contrariando as limitaÃÃes desse funcional. Isso e o baixo custo computacional foram as motivaÃÃes que levaram a sua escolha em vez da adoÃÃo de funcionais mais sofisticados (e computacionalmente mais pesados). Os cristais de guanina e citosina (adenina e timina) sÃo previstos terem gaps diretos (indiretos), com os valores experimentais estimados a partir da absorÃÃo de 3,7 eV e 3,8 eV (3,8 eV e 4,0 eV), na mesma ordem. Os resultados LDA mostraram gaps de energia menores do que os valores experimentais, como esperado, e os gaps experimentais estimados a partir da absorÃÃo Ãtica sÃo, em geral, menores do que os valores experimentais disponÃveis na literatura (exceto, para a guanina). A ordem crescente nos valores calculados dos gaps de energia para os cristais à dada por G < A < C < T, enquanto os valores experimentais obtidos nesta tese (a partir da absorÃÃo Ãptica) seguem a ordem A < G < C < T em contraste com as medidas de raios-x, que indicam a sequÃncia G < C < A < T. Para os elÃtrons e buracos se movendo das ligaÃÃes de hidrogÃnio (paralelas ao plano molecular da base), as massas efetivas sÃo geralmente elevadas, exceto para a timina. Quando os mesmos elÃtrons se movimentam ao do eixo de empilhamento molecular, entretanto, as massas efetivas ficam entre 4,0 e 6,3m0, sugerindo estes cristais se comportam como semicondutores de gap largo ao longo das direÃÃes de empilhamento molecular. O transporte de buracos tambÃm à favorecido ao longo da direÃÃo de empilhamento, exceto para a timina. Finalmente, a funÃÃo dielÃtrica complexa foi calculada para cada cristal anidro das bases do ADN, sendo observada uma forte anisotropia para a incidÃncia de luz polarizada nos casos da guanina, adenina e timina, mas nÃo para a citosina.
|
2 |
DeformaÃÃes estruturais dependentes da energia de Fermi em nanotubos de parede simples.Bruno Gondim de Melo Vieira 27 March 2014 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Os nanotubos de carbono fazem parte de um conjunto de materiais nanomÃtricos que geram grande interesse tanto na comunidade acadÃmica quanto nas empresas do setor de tecnologia. Devido a sua estrutura Ãnica, os nanotubos de carbono estÃo entre os materiais mais duros e fortes jà descobertos. AlÃm disso, uma de suas caracterÃsticas mais interessantes à o fato de muitas das suas propriedades mecÃnicas estarem relacionadas com suas propriedades eletrÃnicas, que, por sua vez, estÃo intimamente atreladas Ãs caracterÃsticas estruturais do material. Por
esses motivos, tais materiais tÃm sido considerados promissores em aplicaÃÃes como nanoatuadores. Neste trabalho, entÃo, investigamos a atuaÃÃo eletromecÃnica dos nanotubos de carbono de parede simples (SWNTs) por meio do mÃtodo Tight-Binding estendido (ETB), seguindo o procedimento utilizado por VerÃosa et al. [1]. A energia dos nanotubos à calculada assumindo que os elÃtrons populam as bandas de energia de acordo com a distribuiÃÃo de Fermi-Dirac para uma dada energia de Fermi, que à o parÃmetro que utilizamos para simular essa atuaÃÃo eletromecÃnica. Foi verificado que a relaxaÃÃo do estresse eletrÃnico gerado pela variaÃÃo da energia de Fermi do nanotubo causa grandes alteraÃÃes tanto na deformaÃÃo torcional quanto nas deformaÃÃes axial e radial para todos os tipos de SWNTs quirais, especialmente para os semicondutores. Essas deformaÃÃes induzidas afetam diretamente a estrutura de bandas dos nanotubos, de modo que grandes variaÃÃes nas energias de transiÃÃo Ãtica foram observadas.
AlÃm disso, foi mostrado que todas as trÃs deformaÃÃes sÃo de igual importÃncia no processo de relaxaÃÃo, tal que todas sÃo igualmente responsÃveis pelas mudanÃas nas energias de transiÃÃo Ãtica. Assim, obteve-se deformaÃÃes torcionais de atà 1% para o nanotubo (8, 7), quando sua energia de Fermi à de aproximadamente 1eV, causando mudanÃas de aproximadamente 0, 4eV
em suas energias de transiÃÃo Ãtica.
|
3 |
Transporte eletrÃnico em anÃis quÃnticos de grafeno. / Electronic transport in graphene quantum ringsDuarte Josà Pereira de Sousa 13 July 2015 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Neste trabalho, Ã proposto um dispositivo de controle de corrente que explora a fase adquirida por um portador de carga quando este tunela atravÃs de uma barreira de potencial no grafeno no regime balÃstico sem a necessidade da presenÃa de um gap no espectro de energias. O sistema atua como um interferÃmetro baseado em um anel quÃntico de grafeno com bordas armchair, onde a diferenÃa de fase entre as funÃÃes de onda para elÃtrons que tomam diferentes caminhos pode ser controlada atravÃs da intensidade das barreiras de potencial nos braÃos do anel. Variando os parÃmetros das barreiras a interferÃncia pode tornar-se completamente destrutiva. Ã demonstrado como esse efeito de interferÃncia pode ser utilizado para o desenvolvimento de portas lÃgicas simples baseadas em grafeno. / In this work, we propose a current switch device that exploits the phase acquired by a charge carrier as it tunnels through a potential barrier in graphene in the ballistic
regime without the need of the presence of a gap in the spectrum. The system acts as an interferometer based on an armchair graphene quantum ring, where the phase difference
between interfering electronic wave functions for each path can be controlled by tuning the height of a potential barrier in the ring arms. By varying the parameters of the potential
barriers the interference can become completely destructive. We demonstrate how this interference effect can be used for developing a simple graphene-based logic gate.
|
4 |
Transportes e confinamento em monocamada e bicamada de nanoestruturas de grafeno com diferentes bordas, interfaces e potenciais / Transport and confinement in monolayer and bilayer graphene nanostructures with different edges, interfaces and potentialsDiego Rabelo da Costa 26 November 2014 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Grafeno, uma rede bidimensional de Ãtomos de carbono, tem sido amplamente estudado durante os Ãltimos anos. O interesse por este material nÃo à apenas devido Ãs suas possÃveis aplicaÃÃes tecnolÃgicas futuras, mas tambÃm porque oferece a possibilidade de investigar fenÃmenos interessantes previstos pelas teorias quÃnticas de campo, que vÃo desde o tunelamento de Klein e outros efeitos quasi-relativÃsticos à existÃncia de novos tipos de graus de liberdade do elÃtron, ou seja, o pseudo-spin, e a existÃncia de dois vales eletrÃnicos nÃo-equivalentes na vizinhanÃa dos pontos sem gap do seu espectro de energia. VÃrias das propriedades exÃticas observadas no grafeno originam-se do facto de que dentro da aproximaÃÃo de baixas energias para o Hamiltoniano tight-binding do grafeno, elÃtrons se comportam como fÃrmions de Dirac sem massa, com uma dispersÃo de energia linear. Assim como no caso de uma monocamada de grafeno, o espectro eletrÃnico de baixas energias para uma bicamada de grafeno à sem gap, mas, neste caso, à dominado pela dispersÃo parabÃlica. No entanto, uma caracterÃstica interessante à compartilhada por ambas monocamada e bicamada de grafeno: o grau de liberdade de vale.
Nesta tese, nÃs investigamos teoricamente: (i) as propriedades dinÃmicas em mono e bicamadas de grafeno, realizando um estudo sistemÃtico do espalhamento de pacotes de onda em diferentes formas de interfaces, bordas e potenciais; e, alÃm disso, (ii) os nÃveis de energia de sistemas confinados no grafeno na presenÃa ou ausÃncia de campos magnÃticos e elÃtricos externos. Na primeira parte do trabalho, nÃs utilizamos a abordagem tight-binding para estudar o espalhamento de um pacote de onda Gaussiano nas bordas de uma monocamada de grafeno (armchair e zigzag) na presenÃa de campos magnÃticos reais e pseudo-magnÃticos (induzidos por tensÃo) e tambÃm calculamos as probabilidades de transmissÃo de um pacote de onda Gaussiano atravÃs de um contato de ponto quÃntico definido por potenciais eletrostÃticos em bicamadas de grafeno. Estes cÃlculos numÃricos sÃo baseados na soluÃÃo da equaÃÃo de SchrÃdinger dependente do tempo para o Hamiltoniano do modelo tight-binding, usando a tÃcnica Split-operator. Nossa teoria permite investigar espalhamento no espaÃo recÃproco, e dependendo do tipo de borda do grafeno, nÃs observamos espalhamento dentro do mesmo vale, ou entre diferentes vales. Na presenÃa de um campo magnÃtico externo, as bem conhecidas Ãrbitas skipping orbits sÃo observadas. No entanto, nossos resultados demonstram que, no caso de um campo pseudo-magnÃtico induzido por uma tensÃo nÃo-uniforme, o espalhamento por uma borba armchair resulta em um estado de borda nÃo-propagante. NÃs tambÃm propomos um sistema de filtragem de vales muito eficiente atravÃs de um sistema de contato de ponto quÃntico definido por portas eletrostÃticas em uma bicamada de grafeno. Para o sistema de bicamadas sugerido, nÃs investigamos a forma de melhorar a eficiÃncia do sistema como um filtro de vales por diferentes parÃmetros, como comprimento, largura e amplitude do potencial aplicado.
Na segunda parte da tese, nÃs apresentamos um estudo sistemÃtico dos espectros de energia de anÃis quÃnticos de grafeno com diferentes geometrias e tipos de borda, na presenÃa de um campo magnÃtico perpendicular. NÃs discutimos quais caracterÃsticas obtidas por meio de um modelo simplificado de Dirac podem ser recuperadas quando os auto-estados de anÃis quÃnticos de grafeno sÃo comparados com os resultados do modelo tight-binding. AlÃm disso, nÃs tambÃm investigamos os estados confinados em dois sistemas hÃbridos diferentes de monocamada - bicamada, identificando estados localizados dentro do ponto e estados de borda para as estruturas de confinamento em bicamadas sugeridas, assim como vamos estudar o comportamento dos nÃveis de energia em funÃÃo do tamanho do ponto e sob um campo magnÃtico externo aplicado. Finalmente, usando o modelo contÃnuo de Dirac de quatro bandas, nÃs tambÃm derivamos uma expressÃo geral para a condiÃÃo de contorno de massa infinita em bicamada de grafeno, a fim de aplicar essa condiÃÃo de contorno para calcular analiticamente os estados confinados e as correspondentes funÃÃes de onda em um ponto quÃntico em uma bicamada de grafeno na ausÃncia e na presenÃa de um campo magnÃtico perpendicular. Nossos resultados analÃticos apresentam boa concordÃncia quando comparados com os resultados tight-binding. / Graphene, a two-dimensional lattice of carbon atoms, has been widely studied during the past few years. The interest in this material is not only due to its possible future technological applications, but also because it provides the possibility to probe interesting phenomena predicted by quantum field theories, ranging from Klein tunneling and other quasi-relativistic effects to the existence of new types of electron degrees of freedom, namely, the pseudo-spin, and the existence of two inequivalent electronic valleys in the vicinity of the gapless points of its energy spectrum. Several of the exotic properties observed in graphene originate from the fact that within the low energy approximation for the tight-binding Hamiltonian of graphene, electrons behave as massless Dirac fermions, with a linear energy dispersion. Just like in single layer graphene, the low-energy eletronic spectrum in bilayer graphene is gapless, but in this case it is dominated by the parabolic dispersion. Nevertheless, one interesting feature is shared by both monolayer and bilayer graphene: the valley degree of freedom.
In this thesis, we theoretically investigate: (i) the dynamic properties in mono and bilayer graphene, performing a systematic study of wave packet scattering in different interface shapes, edges and potentials; and furthermore (ii) the energy levels of confined systems in graphene in the presence or absence of external magnetic and electric fields. In the first part of the work, we use the tight-binding approach to study the scattering of a Gaussian wave packet on monolayer graphene edges (armchair and zigzag) in the presence of real and pseudo (strain induced) magnetic fields and also calculate the transmission probabilities of a Gaussian wave packet through a quantum point contact defined by electrostatic gates in bilayer graphene. These numerical calculations are based on the solution of the time-dependent SchrÃdinger equation for the tight-binding model Hamiltonian, using the Split-operator technique. Our theory allows us to investigate scattering in reciprocal space, and depending on the type of graphene edge we observe scattering within the same valley, or between different valleys. In the presence of an external magnetic field, the well known skipping orbits are observed. However, our results demonstrate that in the case of a pseudo-magnetic field, induced by non-uniform strain, the scattering by an armchair edge results in a non-propagating edge state. We propose also a very efficient valley filtering through a quantum point contact system defined by electrostatic gates in bilayer graphene. For the suggested bilayer system, we investigate how to improve the efficiency of the system as a valley filter by varying parameters, such as length, width and amplitude of the applied potential.
In the second part of the thesis, we present a systematic study of the energy spectra of graphene quantum rings having different geometries and edge types, in the presence of a perpendicular magnetic field. We discuss which features obtained through a simplified Dirac model can be recovered when the eigenstates of graphene quantum rings are compared with the tight-binding results. Furthermore, we also investigate the confined states in two different hybrid monolayer - bilayer systems, identifying dot-localized states and edge states for the suggested bilayer confinement structures, as well as we will study the behavior of the energy levels as a function of dot size and under an applied external magnetic field. Finally, using the four-band continuum Dirac model, we also derive a general expression for the infinite-mass boundary condition in bilayer graphene in order to apply this boundary condition to calculate analytically the confined states and the corresponding wave functions in a bilayer graphene quantum dot in the absence and presence of a perpendicular magnetic field. Our analytic results exhibit good agreement when compared with the tight-binding ones.
|
5 |
Propriedades estruturais, eletrÃnicas e Ãpticas dos cristais anidros das bases pirimidÃnicas: simulaÃÃes na teoria do funcional da densidade / PROPERTIES STRUCTURAL, ELECTRONIC AND OPTICAL CRYSTALS ANHYROUS THE BASES PYRIMIDINE: SIMULATION ON THE THEORY OF FUNCTIONAL DENSITYMauricelio Bezerra da Silva 29 January 2016 (has links)
Uracila (U), timina (T) e citosina (C) sÃo bases nitrogenadas do tipo pirimidÃnicas. Essas juntamente com as outras duas bases pÃricas adenina (A) e guanina (G), formam as bases essenciais da molÃcula do Ãcido ribonucleico (ARN) e Ãcido desoxirribonucleico (ADN), que contÃm as informaÃÃes genÃticas usadas pelas cÃlulas vivas. Os cristais de ADN e ARN apresentam caracterÃsticas semicondutoras bastantes atrativas na Ãrea de eletrÃnica orgÃnica, e por este motivo sÃo fortes candidatos na fabricaÃÃo de nanodispositivos moleculares. No entanto, os avanÃos nessa Ãrea ainda sÃo prematuros. Nesse trabalho sÃo apresentadas as propriedades estruturais, eletrÃnicas e Ãpticas dos cristais anidros das bases nucleotÃdicas pirimidÃnicas. Os resultados teÃricos foram obtidos apÃs cÃlculos baseados na teoria do funcional da densidade DFT, sob uma energia de corte de 830 eV, utilizando a aproximaÃÃes da densidade local (LDA) e do gradiente generalizado (GGA), nessa Ãltima foi incluindo correÃÃes empÃricas para interaÃÃes dispersivas (PBE+TS) disponÃveis no pacote CASTEP. Os resultados computacionais foram comparados entÃo com os experimentos de absorÃÃo Ãtica e de absorÃÃo UV para os cristais. Estudos teÃricos aplicados a cristais de citosina, timina, adenina e guanina jà estÃo disponÃveis na literatura. No entanto, faltava ainda uma descriÃÃo utilizando funcionais mais sofisticado como o adotado neste trabalho. Os valores de absorÃÃo apresentados para os cristais de uracila, timina e citosina mostra que estes possuem, respectivamente, gaps indireto, direto e indireto com valores obtidos de 4,03 eV, 3,80 eV e 4,20 eV. Como esperado, os resultados GGA+TS mostraram gaps de energia menores dos que os valores experimentais: 3,45 eV (U), 3,47 eV (C) e 3,50 eV (T). CÃlculos de massa efetiva confirmam os dados da literatura de que as bases, em geral, sÃo semicondutores de gaps largos. Por fim, os resultados obtidos por DFT sugerem um razoÃvel grau de anisotropia Ãptica para a absorÃÃo e funÃÃo dielÃtrica complexa, especialmente na uracila e timina / Uracil (U), thymine (T) and cytosine (C) are nitrogenous bases of the pyrimidine type. These along with the other two bases purines adenine (A) and guanine (G), form the essential basis of the ribonucleic acid molecule (RNA) and acid deoxyribonucleic (DNA), which contains the genetic information used by living cells. DNA and RNA crystals have enough attractive semiconductor characteristics in the field of organic electronics, and for this reason are strong candidates in the manufacture of molecular nanodevices. However, advancements in this area are still premature. This work presents the structural, electronic and optical of the anhydrous crystals of pyrimidine nucleotide bases. The theoretical results were obtained after calculations based on density functional theory (DFT), with an energy cut of 830 eV, using the approximations of local density (LDA) and generalized gradient (GGA), this last one including empirical corrections to dispersive interactions (PBE + TS) available at CASTEP package. The computational results were then compared with the crystals experiments of optical absorption and UV absorption. Theoretical studies applied to the crystals cytosine, thymine, adenine and guanine are already available in the literature. However, it is still missing a description using a more sophisticated functional as was used in this work. The absorption values obtained for the uracil, thymine and cytosine crystals shows that these have, respectively, indirect, direct and indirect gaps with values of 4.03 eV, 3.80 eV and 4.20 eV. As expected, the theoretical results exhibited energy gaps lower than the experimental values: 3.45 eV (U), 3.47 eV (C) and 3.50 eV (T). Effective mass calculations confirm literature data that the bases are generally wide gap semiconductor. Finally, the results obtained by DFT suggest a reasonable degree of optical anisotropy for the absorption and complex dielectric function, especially in uracil and thymine. As expected, the theoretical results exhibited energy gaps lower than the experimental values: 3.45 eV (U), 3.47 eV (C) and 3.50 eV. (T). Effective mass calculations confirm the literature data that the bases are semiconductor with wide gaps. Finally, the results obtained by DFT suggest a reasonable degree of optical anisotropy for the absorption and complex dielectric function, especially in the uracil and thymine cases.
|
Page generated in 0.0851 seconds