• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tree-grass and tree-tree interactions in a temperate savanna

Simmons, Mark Trevor 15 November 2004 (has links)
Savannas comprise over one eighth of the world's land surface with some 50 Mha in North America alone. They are productive systems supporting a high level of both faunal and floral diversity and are of increasing socioeconomic importance. The maintenance and formation of savannas have been attributed to climate, soils, herbivory and fire. However, the reasons for the coexistence of trees and the grass layer have still to be determined. These two contrasting life forms create a complex of intra- and interspecific positive, negative, and neutral interactions, few of which have been quantified. Under lower-than-average rainfall, tree effects on grasses in a Prosopis savanna in northern Texas were largely neutral with few measurable competitive or facultative effects from the tree canopy. However, grasses demonstrated increased productivity where belowground competition with neighboring trees was removed. Similarly, tree growth increased following the removal of grasses under and around individual trees, particularly on shallower soils, but only during a season of significant precipitation. Low intensity burning of grasses enhanced growth of adult trees, but patterns were inconsistent between two different sites. Moderate clipping around individual trees had no apparent effect on tree growth. Intraspecific competition between savanna trees was not evident, but may have been blurred by an extensive, lateral distribution of near-surface roots. Overall, tree intraspecific competition was neutral regardless of soil depth, suggesting lateral tree roots may be only used opportunistically. Although some competitive relationships were verified, the differences in the responses between the two years of study, and at different sites indicated that soil depth and climate may have overriding impacts on tree-grass interactions and savanna dynamics in this system.
2

Tree-grass and tree-tree interactions in a temperate savanna

Simmons, Mark Trevor 15 November 2004 (has links)
Savannas comprise over one eighth of the world's land surface with some 50 Mha in North America alone. They are productive systems supporting a high level of both faunal and floral diversity and are of increasing socioeconomic importance. The maintenance and formation of savannas have been attributed to climate, soils, herbivory and fire. However, the reasons for the coexistence of trees and the grass layer have still to be determined. These two contrasting life forms create a complex of intra- and interspecific positive, negative, and neutral interactions, few of which have been quantified. Under lower-than-average rainfall, tree effects on grasses in a Prosopis savanna in northern Texas were largely neutral with few measurable competitive or facultative effects from the tree canopy. However, grasses demonstrated increased productivity where belowground competition with neighboring trees was removed. Similarly, tree growth increased following the removal of grasses under and around individual trees, particularly on shallower soils, but only during a season of significant precipitation. Low intensity burning of grasses enhanced growth of adult trees, but patterns were inconsistent between two different sites. Moderate clipping around individual trees had no apparent effect on tree growth. Intraspecific competition between savanna trees was not evident, but may have been blurred by an extensive, lateral distribution of near-surface roots. Overall, tree intraspecific competition was neutral regardless of soil depth, suggesting lateral tree roots may be only used opportunistically. Although some competitive relationships were verified, the differences in the responses between the two years of study, and at different sites indicated that soil depth and climate may have overriding impacts on tree-grass interactions and savanna dynamics in this system.
3

Spatial pattern and uncertainty of soil carbon and nitrogen in a subtropical savanna landscape in southern Texas

Liu, Feng 15 May 2009 (has links)
Woody invasion into grasslands has been reported world-wide and has affected both the magnitude and spatial heterogeneity of soil carbon (C) and nitrogen (N). Since grasslands cover a large portion of the Earth's land surface, invasion of woody plants could have impacts on regional and global biogeochemistry. To understand large-scale ecological and policy implications of woody invasion, it is critical to understand the spatial pattern and uncertainty of soil C and N and their relationship with vegetation and soil attributes, as well as develop effective approaches to estimate soil C and N over large landscapes and regions. The goal of this study was to improve our understanding of the spatial pattern of soil organic carbon (SOC) and total nitrogen (TN) and their controlling factors in savanna landscapes and develop efficient sampling strategies for evaluating the effects of woody invasion. Specific objectives of this study were to: (1) Quantify the spatial pattern and uncertainty associated with SOC and develop efficient sampling strategies to estimate SOC storage; (2) Assess the influence of soil and vegetation factors on spatial distribution of SOC and TN; and (3) Determine the influence of physical variables related to landscape position and soil on woody vegetation structure. Conditional sequential indicator simulations indicated that woody encroachment into grassland increased both spatial heterogeneity and uncertainty of SOC, which increased errors in estimating SOC storage. Stratified random sampling with higher density in woody patches, plus structured sampling in cluster with strong spatial pattern, substantially increased estimation accuracy. Efficient sampling strategies for estimating SOC storage were developed based on these findings. Direct and spatial correlation and scaling analyses showed that SOC and TN were strongly correlated with litter and root biomass. Invaded woody vegetation has the most impact on spatial distribution of SOC and TN. Canonical correspondence analysis showed that variables related to landscape position were the primary factors determining the spatial distribution of woody species. These new insights will facilitate the estimation of soil C and N pools at landscape and regional scales, and will help evaluate the potential impacts of woody plant encroachment on the biogeochemistry of C and N.
4

Spatial pattern and uncertainty of soil carbon and nitrogen in a subtropical savanna landscape in southern Texas

Liu, Feng 15 May 2009 (has links)
Woody invasion into grasslands has been reported world-wide and has affected both the magnitude and spatial heterogeneity of soil carbon (C) and nitrogen (N). Since grasslands cover a large portion of the Earth's land surface, invasion of woody plants could have impacts on regional and global biogeochemistry. To understand large-scale ecological and policy implications of woody invasion, it is critical to understand the spatial pattern and uncertainty of soil C and N and their relationship with vegetation and soil attributes, as well as develop effective approaches to estimate soil C and N over large landscapes and regions. The goal of this study was to improve our understanding of the spatial pattern of soil organic carbon (SOC) and total nitrogen (TN) and their controlling factors in savanna landscapes and develop efficient sampling strategies for evaluating the effects of woody invasion. Specific objectives of this study were to: (1) Quantify the spatial pattern and uncertainty associated with SOC and develop efficient sampling strategies to estimate SOC storage; (2) Assess the influence of soil and vegetation factors on spatial distribution of SOC and TN; and (3) Determine the influence of physical variables related to landscape position and soil on woody vegetation structure. Conditional sequential indicator simulations indicated that woody encroachment into grassland increased both spatial heterogeneity and uncertainty of SOC, which increased errors in estimating SOC storage. Stratified random sampling with higher density in woody patches, plus structured sampling in cluster with strong spatial pattern, substantially increased estimation accuracy. Efficient sampling strategies for estimating SOC storage were developed based on these findings. Direct and spatial correlation and scaling analyses showed that SOC and TN were strongly correlated with litter and root biomass. Invaded woody vegetation has the most impact on spatial distribution of SOC and TN. Canonical correspondence analysis showed that variables related to landscape position were the primary factors determining the spatial distribution of woody species. These new insights will facilitate the estimation of soil C and N pools at landscape and regional scales, and will help evaluate the potential impacts of woody plant encroachment on the biogeochemistry of C and N.
5

Vegetation of the eastern Cabeza Prieta NWR and adjacent BLM lands, Arizona

Malusa, Jim 31 December 2003 (has links)
A report on the vegetation of the Cabeza Prieta NWR, with tables giving statistical representations of the vegetation associations.
6

Vegetation database for Cabeza Prieta NWR

Malusa, Jim January 2004 (has links)
Releve plot data for Cabeza Prieta NWR, sampled from 1999 to 2002
7

Digital vegetation maps of eastern Cabeza Prieta NWR and adjacent BLM lands

Malusa, Jim January 2004 (has links)
Shapefiles of the vegetation, watercourses, and sampling routes traveled, Cabeza Prieta NWR

Page generated in 0.0606 seconds