• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Corrección del corrimiento estático para estudios 3D del método magnetotelúrico

Bascur Torrejón, Juan Andrés January 2015 (has links)
Magíster en Ciencias, Mención Geofísica / En este trabajo se determina una metodología para corregir el corrimiento estático (SS) en el método magnetotelúrico (MT) que es adecuada para el modelamiento tridimensional (3D) de sus datos. Para ello se investigaron tres métodos, el MT/TDEM, basado en la calibración con Transiente Electromagnético (TDEM), y los modelamientos del SS con representación de Sasaki y con la Matriz Completa de Distorsión (MCD), los cuales resuelven simultáneamente el SS y la distribución de resistividad eléctrica usando el proceso de inversión conjunta de datos MT. Estos métodos fueron estudiados a través del desarrollo teórico, simulaciones con modelos y usando datos MT de la falla de Pisagua (MT Pisagua) adquiridos en una campaña de terreno para este trabajo. Para investigar los métodos de modelamiento del SS con Sasaki y MCD fue necesario implementarlos previamente. Para ello se desarrolló un algoritmo que fue aplicado al código de inversión 3D MT WSINV3DMT del autor Weerachai Siripunvaraporn. Los resultados de este trabajo indican que los métodos MT/TDEM y modelamiento del SS con Sasaki sólo pueden corregir parcialmente el SS en datos MT provenientes de una distribución de resistividad 3D del subsuelo. En cambio, el modelamiento del SS con MCD permite una corrección del SS más completa, en donde se pueden modelar, a través del proceso de inversión 3D, adecuadamente todas las componentes de los datos MT (consiguiendo buen ajuste en Zxx, Zxy, Zyx y Zyy). Debido a lo anterior, la metodología determinada con este trabajo corresponde al modelamiento del SS usando MCD. Adicionalmente, con el estudio MT Pisagua, adquirido en este trabajo, se obtiene un modelo 3D de resistividad eléctrica del subsuelo que permite investigar la falla de Pisagua. En el modelo se detecta una estructura de baja resistividad (entre 50 a 100 Ohm-m) que se extiende paralela al escarpe de la falla Pisagua (N65E°). Esta estructura indicaría la zona de mayor daño en el basamento (Intrusivo de Pisagua) asociada a la actividad de la falla. Considerando estos resultados, se infiere que la falla de Pisagua seguiría una geometría inversa, lo cual permite explicar la ubicación de la zona de daño detectada con MT y la morfología de terreno.
2

Aplicación del método magnetotelúrico en la exploración de un sistema geotermal, en la región de Atacama, Chile

García Sanders, Karin Isabel January 2014 (has links)
Magíster en Ciencias, Mención Geofísica / Se realizó una campaña en un campo geotermal y se utilizó el método geofísico magnetotelúrico (MT). El área de exploración se encuentra al norte de Chile, en la región de Atacama en el límite sur del altiplano Chileno, en el Llano los Cuyanos a una altitud promedio de 4100 msnm. En términos geológicos se encuentra en una zona con volcanismo reciente en una cadena volcánica con orientación NW-SE del Holoceno-Plioceno con una serie de complejos volcánicos, estrato-volcánicos, complejos de domo y lavas y campos de ignimbritas (Clavero et al., 1997, 1998). La principal característica estructural se encuentra en el dominio de las unidades que forman la cordillera de Claudio Gay, en esta zona se encuentran fallas inversas de alto ángulo que cabalgan rocas volcanoclásticas del Permo-Triásico sobre rocas sedimentarias sintectónicas y volcánicas del Oligo-Mioceno (Clavero et al., 1997, 1998). Se instalaron dos estaciones de MT por día desde el 26 de abril al 6 de mayo de 2012, de las que 19 midieron buenos resultados. Se dejó midiendo cada estación por toda una noche y se retiraba al día siguiente para ser colocada en la próxima ubicación de la estación. La distancia entre cada estación fue de 1-2 km en una grilla de estaciones. Los resultados de la inversión muestran que toda el área de estudio se encuentra en una zona de anomalía de muy baja resistividad (< 10 Ohm-m) (no se pudo delimitar en el plano horizontal esta anomalía). Comenzando a los 200 m de profundidad y extendiéndose hasta 1 km de profundidad aproximadamente en el extremo este y hacia el oeste, la anomalía se extiende a una mayor profundidad (> 2 km). Los primeros cientos de metros la estructura geoeléctrica es unidimensional y a mayor profundidad cuando comienza a aumentar la resistividad, la estructura se vuelve de 2D con un rumbo geoeléctrico casi NS y a mayor profundidad el rumbo de esta estructura es rotado en sentido horario. A la luz de los resultados recién mencionados se puede suponer que la zona de exploración se encuentra en un campo geotermal con un upflow (flujo de calor ascendente) en el extremo este de las mediciones y un outflow (flujo de calor hacia afuera del sistema) en el extremo oeste. Considerando además que la zona donde se encuentra la anomalía de baja resistividad esté a una temperatura en el rango de 50-200ºC, y considerando que la roca presenta minerales de arcilla con alteración hidrotermal que se encuentran en equilibrio con la temperatura. Esto se puede deducir en base a tres razones: 1) evidencias geotermales en superficie como alteración hidrotermal en el suelo y termas, 2) la forma de la estructura de baja resistividad, y 3) mediciones de temperatura superficial al este de la zona explorada indican una temperatura mayor que la del promedio para un período de 25 días. Se sabe que la estructura de resistividades de un campo geotermal comprende una primera capa (más superficial) de muy baja resistividad (< 10 Ohm-m) y que por debajo de esta estructura que la envuelve, se encuentra el reservorio (núcleo resistivo) de mayor temperatura y resistividad (> 15 Ohm-m). La forma de la estructura depende de la topografía, gradiente hidrológico, la roca huésped y salinidad del medio. Los resultados de la inversión 3D no muestran un reservorio definido (al menos con el parámetro utilizado: la resistividad), lo cual sugiere que el reservorio no se encuentre allí, que no exista, que este apantallado por otro fenómeno o considerando las zonas de upflow y outflow se encuentre hacia el este de la exploración. Sin embargo la inversión 2D sí muestra lo que podría considerarse un reservorio, en el extremo este de las mediciones a una profundidad de ~2 km. Esta diferencia se debe a que el ajuste de los datos en esa zona no es bueno y que podrían estar distorsionados por un efecto inductivo, efectos de borde o por la topografía.

Page generated in 0.0644 seconds