Spelling suggestions: "subject:"prostate - cancer - chemotherapy."" "subject:"prostate - cancer - hemotherapy.""
1 |
Effect of FTY720 on the growth and invasion ability of androgenindependent prostate cancer cellsZhou, Chun, 周純 January 2005 (has links)
published_or_final_version / abstract / Anatomy / Master / Master of Philosophy
|
2 |
S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC), water soluble garlic derivatives, suppress growth and invasion of androgen-independent prostate cancer, under in vitro and in vivo conditionsChu, Qingjun., 褚慶軍. January 2006 (has links)
published_or_final_version / abstract / Anatomy / Doctoral / Doctor of Philosophy
|
3 |
The potential clinical applications of garlic-derived S-allylmercaptocysteine in the treatment of hormone refractory prostatecancerHoward, Edward William. January 2007 (has links)
published_or_final_version / abstract / Anatomy / Doctoral / Doctor of Philosophy
|
4 |
Dissecting the therapeutic potential of FTY720: a fungus derived metabolite, on advanced prostatecancerChua, Chee-wai., 蔡志偉. January 2008 (has links)
published_or_final_version / Anatomy / Doctoral / Doctor of Philosophy
|
5 |
Selenocystine induces caspase-dependent and mitochondria-mediated apoptosis in human prostate carcinoma LNCaP cells.January 2010 (has links)
Choi, Mei Yuk. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 79-89). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.iii / Abstract (Chinese) --- p.v / List of Abbreviations --- p.vii / List of Figures --- p.viii / Chapter Chapter 1 --- Introduction / Chapter 1.1. --- General introduction of cancer --- p.1 / Chapter 1.2. --- Overview of apoptosis --- p.2 / Chapter 1.2.1. --- The extrinsic death receptor pathway --- p.4 / Chapter 1.2.2. --- The intrinsic mitochondrial pathway --- p.4 / Chapter 1.2.3. --- Cross-talk between the intrinsic and extrinsic pathways --- p.5 / Chapter 1.3. --- Overview of selenium --- p.6 / Chapter 1.3.1. --- Selenium and prostate cancer --- p.7 / Chapter i. --- Epidemiological studies --- p.7 / Chapter ii. --- Clinical trials --- p.8 / Chapter iii. --- Preclinical investigations --- p.10 / Chapter a. --- in vivo studies --- p.11 / Chapter b. --- in vitro studies --- p.12 / Chapter c. --- selenocystine and prostate cancer --- p.13 / Chapter 1.4. --- Objective --- p.15 / Chapter Chapter 2 --- Materials and methods / Chapter 2.1. --- Materials --- p.18 / Chapter 2.2. --- Methods --- p.19 / Chapter 2.2.1. --- Cell culture --- p.19 / Chapter 2.2.2. --- MTT assay --- p.19 / Chapter 2.2.3. --- Cell cycle distribution analysis --- p.20 / Chapter 2.2.4. --- TUNEL assay and DAPI staining --- p.20 / Chapter 2.2.5. --- Evaluation of mitochondrial membrane potential (ΔΨm) --- p.21 / Chapter 2.2.6. --- Measurement of superoxide generation (DHE assay) --- p.22 / Chapter 2.2.7. --- Inhibition of superoxide generation --- p.22 / Chapter 2.2.8. --- Western blot analysis --- p.23 / Chapter 2.2.9. --- Statistical analysis --- p.24 / Chapter Chapter 3 --- Results / Chapter 3.1. --- The antiproliferatvie effect of SeC on LNCaP and PC-3 cells --- p.25 / Chapter 3.2. --- The role of caspases in SeC-induced apoptosis --- p.34 / Chapter 3.3. --- The effect of SeC on the mitochondrial membrane potential --- p.39 / Chapter 3.4. --- The involvement of p53 in SeC-treated LNCaP cells --- p.44 / Chapter 3.5. --- MAPK and PI3K/Akt signaling pathways --- p.47 / Chapter 3.6. --- The role of superoxide in SeC-induced apoptosis --- p.52 / Chapter Chapter 4 --- Discussion --- p.62 / Chapter Chapter 5 --- Conclusion --- p.74 / References --- p.79
|
Page generated in 0.0827 seconds