Spelling suggestions: "subject:"protéine universelle"" "subject:"laprotéine universelle""
1 |
Caractérisation biochimique des machineries de biosynthèse de t6A, un nucléoside modifié universel / Biochemical characterization of the biosynthesis machineries of t6A, a universal modified nucleosidePerrochia, Ludovic 25 June 2013 (has links)
Les ARN de transfert, éléments centraux de la traduction, présentent une grande variété de nucléosides modifiés dérivés des nucléosides canoniques (A, U, G et C), qui modulent la stabilité, la capacité de décodage et l’identité de ces molécules. t6A (thréonylcarbamoyl-N6-Adénosine) est un nucléoside hypermodifié retrouvé en position 37 (adjacent à l’anticodon) au niveau de tous les ARNt qui s’apparient aux codons de la forme ANN. Il joue un rôle essentiel dans la fidélité de traduction à travers deux fonctions principales : (i) il intervient dans le maintien de la bonne conformation de la boucle anticodon ; (ii) il facilite l’appariement codon/anticodon afin d’éviter le décalage de cadre de lecture durant la synthèse protéique. Ce nucléoside modifié est universel, présent chez les Archées, les Bactéries, les Eucaryotes, mais également chez les organites (mitochondries et chloroplastes), ce qui suggère que son apparition représente une acquisition évolutive importante et très ancienne, probablement antérieure au dernier ancêtre commun universel (LUCA). Pourtant, la voie de biosynthèse de t6A est restée inconnue pendant près de quarante ans.Récemment, des études de génétique ont montré que deux protéines universelles, Sua5/YrdC et Kae1/YgjD, sont nécessaires à sa synthèse chez Saccharomyces cerevisiae et Escherichia coli. Chez les Bactéries, la synthèse in vitro de t6A requiert la présence de deux autres protéines spécifiques à ce domaine du vivant : YeaZ et YjeE. Chez les Archées et les Eucaryotes, Kae1 (l’orthologue de YgjD) fait partie d’un complexe protéique conservé appelé KEOPS (pour Kinase Endopeptidase and Other Proteins of Small size), aux côtés de trois autres protéines : Bud32, Cgi121 et Pcc1, qui n’ont pas d’homologues chez les Bactéries. Depuis sa découverte en 2006 chez S.cerevisiae, ce complexe a été impliqué dans plusieurs processus cellulaires (homéostasie des télomères, maintien du génome, régulation de la transcription), sans que sa fonction ne soit clairement élucidée.Nous avons entrepris de caractériser et de comparer par une approche biochimique in vitro les machineries de biosynthèse de t6A issues des trois domaines du vivants, en utilisant comme organismes modèles l’Archée Pyrococcus abyssi, l’Eucaryote Saccharomyces cerevisiae et la Bactérie Escherichia coli. (i) Nous avons montré pour la première fois que le complexe KEOPS et la protéine Sua5 catalysent ensemble la synthèse de t6A chez les Archées et les Eucaryotes. Nos résultats nous ont permis d’élaborer un modèle de mécanisme catalytique, et nous avons montré par des expériences de complémentation in vitro que ce mécanisme est universel : les différents orthologues Sua5/YrdC sont interchangeables, et le complexe KEOPS est l’analogue fonctionnel du trio de protéines YgjD/YeaZ/YjeE Bactérien. (ii) Nous avons alors étudié le rôle de chacune des sous-unités du complexe KEOPS de Pyrococcus abyssi dans la synthèse de t6A. Ainsi, nous avons montré que Kae1 est le seul composant catalytique stricto sensus et que les trois autres partenaires ont des fonctions distinctes dans la régulation de l’activité catalytique. (iii) Enfin, nous avons étudié la synthèse de t6A chez la mitochondrie de S.cerevisiae, et avons montré que Sua5 et la protéine Qri7, l’orthologue mitochondrial de Kae1/YgjD, catalysent ensemble la synthèse de t6A et constituent ainsi un système minimaliste à deux composants.Ces résultats ouvrent la voie à une compréhension détaillée du mécanisme de biosynthèse de t6A dans les trois domaines du vivant, et permettent de proposer des scénarii évolutifs concernant l’histoire de la machinerie de synthèse de ce nucléoside modifié universel. / Transfer RNA are central elements of the translational system and carry a large diversity of modified nucleosides (derived from canonical nucleosides A, U, G, and C), which tune the stability, the decoding capacity and the identity of these oligonucleotides. t6A (threonylcarbamoyl-N6- adenosine) is a hypermodified nucleoside found at the position 37 (next to the anticodon) in all tRNA decoding ANN codons. It plays an essential role in the fidelity of translation through two main functions: (i) it ensures a correct conformation of the anticodon loop; (ii) it enhances codon/anticodon pairing to prevent frameshifting during translation. This nucleoside is universal, found in Archaea, Bacteria, Eukarya and also in organites such as mitochondria, which suggests that it appeared early in the evolution, probably before the last universal common ancestor (LUCA). Despite the importance of t6A and its distribution, its biosynthetic pathway has remained unknown for almost 40 years.Recently, genetic studies have shown that two universal proteins, Sua5/YrdC and Kae1/YgjD, are both necessary for synthesis of t6A in Saccharomyces cerevisiae and Escherichia coli. In Bacteria, the in vitro synthesis of t6A requires two other bacterial specific proteins called YeaZ and YjeE. In Archaea and Eukarya, Kae1 (the YgjD orthologue) is a part of a conserved protein complex called KEOPS (for Kinase Endopeptidase and Other Proteins of Small size), with three other proteins Bud32, Cgi121 and Pcc1, that have no bacterial homologues. Since its discovery in 2006 in yeast, this complex has been involved in several cellular processes (telomere homeostasis, genome maintenance, transcription regulation), but its real function remained unclear.Using an in vitro biochemical approach we aimed to characterize and compare the t6A biosynthesis systems from the three domains of life, using as model organisms Pyrococcus abyssi (Archaea) Saccharomyces cerevisiae (Eukarya), and Escherichia coli (Bacteria). We have reconstituted for the first time an in vitro system for t6A modification in Archaea and Eukarya, using purified KEOPS and Sua5. This allowed us to propose a model for the catalytic mechanism, and using in vitro complementation experiments we demonstrated that this mechanism is universal: Sua5/YrdC orthologues are interchangeable, and the KEOPS complex is the functional analogue of the bacterial trio YeaZ/YgjD/YjeE. In the second part of this work we have studied the role of each sub unit in the synthesis of t6A. Using KEOPS from P. abyssi as model we demonstrated that Kae1 is the only catalytic component while the three other partners have distinct functions in dimerization, tRNA binding and allosteric regulation. Finally, we have focused on the t6A synthesis in the mitochondria of S.cerevisiae, and shown that Sua5 and Qri7, the mitochondrial orthologue of Kae1/YgjD, catalyze together the synthesis of t6A and so represent a minimal two-component system.Overall these findings shed light on the reaction mechanism of t6A synthesis in the three domains of life, and allowed proposing a scenario concerning the history of the t6A synthesis machinery and its evolution.
|
2 |
Caractérisation biochimique des machineries de biosynthèse de t6A, un nucléoside modifié universelPerrochia, Ludovic 25 June 2013 (has links) (PDF)
Les ARN de transfert, éléments centraux de la traduction, présentent une grande variété de nucléosides modifiés dérivés des nucléosides canoniques (A, U, G et C), qui modulent la stabilité, la capacité de décodage et l'identité de ces molécules. t6A (thréonylcarbamoyl-N6-Adénosine) est un nucléoside hypermodifié retrouvé en position 37 (adjacent à l'anticodon) au niveau de tous les ARNt qui s'apparient aux codons de la forme ANN. Il joue un rôle essentiel dans la fidélité de traduction à travers deux fonctions principales : (i) il intervient dans le maintien de la bonne conformation de la boucle anticodon ; (ii) il facilite l'appariement codon/anticodon afin d'éviter le décalage de cadre de lecture durant la synthèse protéique. Ce nucléoside modifié est universel, présent chez les Archées, les Bactéries, les Eucaryotes, mais également chez les organites (mitochondries et chloroplastes), ce qui suggère que son apparition représente une acquisition évolutive importante et très ancienne, probablement antérieure au dernier ancêtre commun universel (LUCA). Pourtant, la voie de biosynthèse de t6A est restée inconnue pendant près de quarante ans.Récemment, des études de génétique ont montré que deux protéines universelles, Sua5/YrdC et Kae1/YgjD, sont nécessaires à sa synthèse chez Saccharomyces cerevisiae et Escherichia coli. Chez les Bactéries, la synthèse in vitro de t6A requiert la présence de deux autres protéines spécifiques à ce domaine du vivant : YeaZ et YjeE. Chez les Archées et les Eucaryotes, Kae1 (l'orthologue de YgjD) fait partie d'un complexe protéique conservé appelé KEOPS (pour Kinase Endopeptidase and Other Proteins of Small size), aux côtés de trois autres protéines : Bud32, Cgi121 et Pcc1, qui n'ont pas d'homologues chez les Bactéries. Depuis sa découverte en 2006 chez S.cerevisiae, ce complexe a été impliqué dans plusieurs processus cellulaires (homéostasie des télomères, maintien du génome, régulation de la transcription), sans que sa fonction ne soit clairement élucidée.Nous avons entrepris de caractériser et de comparer par une approche biochimique in vitro les machineries de biosynthèse de t6A issues des trois domaines du vivants, en utilisant comme organismes modèles l'Archée Pyrococcus abyssi, l'Eucaryote Saccharomyces cerevisiae et la Bactérie Escherichia coli. (i) Nous avons montré pour la première fois que le complexe KEOPS et la protéine Sua5 catalysent ensemble la synthèse de t6A chez les Archées et les Eucaryotes. Nos résultats nous ont permis d'élaborer un modèle de mécanisme catalytique, et nous avons montré par des expériences de complémentation in vitro que ce mécanisme est universel : les différents orthologues Sua5/YrdC sont interchangeables, et le complexe KEOPS est l'analogue fonctionnel du trio de protéines YgjD/YeaZ/YjeE Bactérien. (ii) Nous avons alors étudié le rôle de chacune des sous-unités du complexe KEOPS de Pyrococcus abyssi dans la synthèse de t6A. Ainsi, nous avons montré que Kae1 est le seul composant catalytique stricto sensus et que les trois autres partenaires ont des fonctions distinctes dans la régulation de l'activité catalytique. (iii) Enfin, nous avons étudié la synthèse de t6A chez la mitochondrie de S.cerevisiae, et avons montré que Sua5 et la protéine Qri7, l'orthologue mitochondrial de Kae1/YgjD, catalysent ensemble la synthèse de t6A et constituent ainsi un système minimaliste à deux composants.Ces résultats ouvrent la voie à une compréhension détaillée du mécanisme de biosynthèse de t6A dans les trois domaines du vivant, et permettent de proposer des scénarii évolutifs concernant l'histoire de la machinerie de synthèse de ce nucléoside modifié universel.
|
3 |
Structure, fonction et évolution de la famille universelle Sua5/YrdC impliquée dans la synthèse du nucléoside modifié t6A / Structure, function and evolution of the universal Sua5/YrdC family involved in the modified nucleoside t6A synthesisPichard, Adeline 16 November 2017 (has links)
Structure, fonction et évolution de la famille universelle Sua5/YrdC impliquée dans la synthèse du nucléoside modifié t6ALa t6A est universellement présente au sein des ARNt décodant les codons ANN et est essentielle pour la fidélité de traduction. Sa synthèse se déroule en deux étapes, dont la première implique la formation de l’intermédiaire de réaction Thréonyl-Carbamoyl-AMP (TC-AMP) par la famille Sua5/YrdC. Cette famille est retrouvée chez tous les organismes et était donc vraisemblablement présente chez le dernier ancêtre commun universel (LUCA). Elle est composée de deux variants distincts, YrdC et Sua5, qui partagent un domaine catalytique orthologue. A la différence du variant YrdC qui est composé d’un domaine unique, le variant Sua5 possède un domaine C-terminal additionnel nommé SUA5, de fonction inconnue. La plupart des espèces code pour un seul variant et les deux variants sont présents dans les trois domaines du vivant, Eucaryote, Archée et Bactérie. Afin d’identifier le rôle du domaine SUA5 et du linker inter-domaine, nous avons étudié la protéine Sua5 de l’archée Pyrococcus abyssi. Nos résultats montrent que ces deux régions sont importantes pour l’activité de Sua5. Le linker est capable de contrôler le passage des ligands en changeant de conformation tandis que le domaine SUA5 agit comme une plateforme d’ancrage pour le linker. Afin de comprendre l’histoire évolutive de la famille Sua5/YrdC, nous avons ensuite étudié la distribution des variants et nous avons utilisé des approches in silico et in vitro afin de déterminer les différences fonctionnelles entre YrdC et Sua5. L’ensemble de ces données nous permet de proposer que LUCA possédait une protéine Sua5 et qu’YrdC serait apparu suite à une perte de domaine dans certains lignées lors de l’évolution. / Structure, function and evolution of the universal Sua5/YrdC family involved in the modified nucleoside t6A synthesist6A is universally found in tRNAs that read ANN codons and is essential for translation fidelity. Its synthesis takes place in two stages, the first one involving the formation of the reaction intermediate Threonyl-Carbamoyl-AMP (TC-AMP) by the Sua5/YrdC family. This family is found in all organisms and was thus presumably presents in the Last Universal Common Ancestor (LUCA). It’s composed of two distinct variants, YrdC and Sua5, which share an orthologous catalytic domain. While YrdC is a single domain protein, Sua5 has an additional C-terminal domain of unknown function named SUA5. Most species encode for either variant and both variants are found in the three domains of life, Eukarya, Archaea and Bacteria. To discover the role of the SUA5 domain and the inter-domain linker, we studied the Sua5 protein from the archaeon Pyrococcus abyssi. We found that they are both important for the activity of Sua5. The linker is able to control the entry and exit of ligands by changing conformation while the SUA5 domain acts as an anchoring platform for the linker. To understand the evolutionary history of the Sua5/YrdC family, we then studied the distribution of Sua5 and YrdC across the tree of life and we used in silico and in vitro approaches to identify functional differences between YrdC and Sua5. Taken together, our work allows us to propose that LUCA encoded a Sua5 protein and that YrdC emerged after domain loss in some lineages during evolution.
|
Page generated in 0.0877 seconds