• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etudes de structure, interactions et dynamique dans des complexes de protéines "chaperone" à l'échelle atomique par spectroscopie RMN / Atomic-resolution studies of structure, dynamics and interactions in chaperone assemblies by NMR spectroscopy.

Weinhaeupl, Katharina 11 January 2018 (has links)
Les chaperons moléculaires, une famille de protéines diverses en structure et taille, sont dédiés à accompagner, replier et protéger d’autres protéines afin qu’elles atteignent leur conformation finale et leur emplacement dans la cellule. Dans ce but, les chaperons moléculaires doivent être hautement spécialisés dans l’exécution de tâches spécifiques, telles que le repliement, le transport ou la désagrégation, et polyvalents dans leur motifs de reconnais- sance, afin de pouvoir interagir avec un grand nombre de protéines di érentes. Di érents chaperons moléculaires collaborent au sein de la cellule, formant ainsi un réseau complexe qui assure le contrôle de la qualité du protéome. Les interactions entre les di érents partenaires de ce réseau et entre les chap- erones et leurs substrats sont souvent dynamiques, ce qui rend leur obser- vation structurale particulièrement di cile pour les techniques de biologie structurale. Par conséquent, il y a à ce jour peu d’information sur les struc- tures et mécanismes d’interaction au sein des complexes chaperon-substrate. Dans cette thèse, je présente des études sur la structure, la dynamique et les interactions entre les substrats de deux chaperons moléculaires, en utilisant diverses méthodes biophysiques et in vivo.Dans la première partie, je montre que la chaperone TIM910, située dans l’espace inter-membranaire des mitochondries, lie ses substrats, des protéines membranaires destinées aux deux membranes mitochondriales, d’une manière très dynamique. Non seulement le complexe TIM910 est en échange constant entre les espèces monomèriques et hexameriques, mais aussi le substrat lié échange entre mulitples conformations à une échelle de millisecondes. Sur la base de la résonance magnétique nucléaire (RMN), de small-angle X-ray scat- tering (SAXS), de l’ultracentrifugation analytique (AUC) et des expériences mutationnelles in vivo et des tests fonctionnels d’import dans les mitochon- dries, je propose un modèle structurale de l’interaction entre le chaperon et la protéine membranaire. TIM910 lie ses substrats dans une poche hydrophobe à l’extérieur du chaperon. Cette interaction est modulaire et se fait avec un ou deux hexamères de TIM910, en fonction de la longueur du substrat.Dans la deuxième partie, nous avons étudié le comportement du récepteur N-terminal du unfoldase ClpC1 de M. tuberculosis en présence d’antibiotiques et de ligands di érents. Le domaine N-terminal de ClpC1 est le site de liai- son de divers antibiotiques nouveaux contre M. tuberculosis. L’antibiotique Cyclomarin A supprime complètement la dynamique induite par le ligand arginine-phosphate. Nous proposons que cette suppression de la dynamique soit le principe fondamental du mécanisme d’action de cet antibiotique.Dans les deux cas, les structures X-ray des chaperons dans leur état apo et la structure de ClpC-NTD liée à des antibiotiques étaient disponibles, mais ces structures statiques ne su sent pas pour expliquer le mécanisme d’action. La structure X-ray de TIM910 n’a pas fourni d’ indication sur l’endroit ou la façon dont les substrats sont liés. De même, les structures X-ray du domaine N-terminal de apo et de Cyclomarine A de ClpC1 ne présentent que des di érences de structure mineures. Les deux exemples montrent que les données structurelles statiques souvent ne permettent pas d’expliquer le fonctionnement d’un système moléculaire, donc la combinaison de di érentes techniques et le développement de nouvelles méthodes pour étudier les complexes chaperon-substrat sont primordiaux pour comprendre leur fonction. / The diverse group of molecular chaperones is dedicated to accompany, fold and protect other proteins until they reach their final conformation and loca- tion inside the cell. To this end, molecular chaperones need to be specialized in performing specific tasks, like folding, transport or disaggregation, and versatile in their recognition pattern to engage many di erent client pro- teins. Moreover, molecular chaperones need to be able to interact with each other and with other components of the protein quality control system in a complex network. Interactions between the di erent partners in this network and between the substrate and the chaperone are often dynamic processes, which are especially di cult to study using standard structural biology tech- niques. Consequently, structural data on chaperone/substrate complexes are sparse, and the mechanisms of chaperone action are poorly understood. In this thesis I present investigations of the structure, dynamics and substrate- interactions of two molecular chaperones, using various biophysical and in vivo methods.In the first part I show that the mitochondrial membrane protein chap- erone TIM910 binds its substrates in a highly dynamic manner. Not only is the TIM910 complex in constant exchange between monomeric and hex- americ species, but also the bound substrate samples multiple conformations on a millisecond timescale. Based on nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), analytical ultracentrifugation (AUC) and in vivo mutational experiments I propose a structural model of the chap- erone/membrane protein interaction. TIM910 binds its substrates in a hy- drophobic pocket on the exterior of the chaperone in a modular fashion, where the number of TIM910 complexes bound depends on the length of the substrate.In the second part I studied the behavior of the N-terminal receptor do- main of the ClpC1 unfoldase from M.tuberculosis in the presence of di erent antibiotics and ligands. The N-terminal domain of ClpC1 is the binding site for various new antibiotics against M.tuberculosis. The antibiotic cyclomarin completely abolishes dynamics induced by the ligand arginine-phosphate. We propose that this suppression of dynamics is the underlying principle for the mechanism of action of this antibiotic.In both cases X-ray structures of the apo or antibiotic bound form were available, but not su cient to explain the mechanism of action. The X- ray structure of TIM910 provided no evidence on where or how substrates are bound. Likewise, X-ray structures of the apo and cyclomarin-bound N-terminal domain of ClpC1 show only minor di erences in structure.Both examples show that static structural data is often not enough to explain how a molecular system works, and only the combination of di er- ent techniques, including newly developed methods enable the atomic-level understanding of chaperone/substrate complexes.

Page generated in 0.0385 seconds