Spelling suggestions: "subject:"1protein simulation"" "subject:"2protein simulation""
1 |
The development of accurate force fields for protein simulationJiao, Yuanfang January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Paul E. Smith / Computer simulations have provided a wealth of information concerning a wide range of systems. The precision of computer simulation results depends on the degree of sampling (time scales) achieved, while the accuracy of the results (given sufficient sampling) depends on the quality of force field used. A force field provides a description of the energy for a system of interest. Recently, we have been developing a Kirkwood Buff (KB) force field for molecular dynamics simulations of biological systems. This force field is based on the KB Theory of solutions, emphasizing the accurate description of intermolecular interactions, and reasonably reproducing a range of other physical properties from experiment. In this approach simulation results in terms of KB integrals can be directly compared with experimental data through a KB analysis of the solution properties. The approach therefore provides a simple and clear method to test the capability of a force field. Here we firstly studied a series of alcohol-water mixtures in an attempt to validate the transferability and additivity of the force field. A general fluctuation theory was applied to investigate the properties of these systems, and to compare with computer simulation results. The possible effects of cosolvents on peptides and proteins were then investigated using N-methylacetamide as model for the peptide backbone and urea as cosolvent. A possible explanation for the urea denaturation of protein structure was provided using a thermodynamics point of view involving transfer free energies and preferential interactions obtained from the KB integrals. Finally, potentials for protein backbone and sidechain torsions were developed by fitting to quantum mechanical calculations and NMR data. Simulations of a variety of peptides and proteins in aqueous solutions were then performed to demonstrate the overall reliability of the force field.
|
2 |
On the effects of external stresses on protein conformation.Budi, Bunarta Hendra (Akin), akin.budi@rmit.edu.au January 2006 (has links)
The use of electromagnetic devices such as microwave ovens and mobile phones has certainly brought convenience to our lives. At the same time, the proliferation of said devices has increased public awareness of the potential health hazards. It is generally assumed that there is little or no risk associated with the use of electromagnetic devices, based on the small amount of power associated with those devices. However, case studies on animals indicate that the risk cannot be entirely ruled out. It has long been known that proteins are sensitive to stress, arising from various sources such as temperature, chemical, pressure, and changes in pH condition. In all of these cases, the protein exhibits clear signs of damage and distress, which range from slight unfolding to complete loss of structure. Frequently, the damage to the protein is alleviated by refolding, either by itself or by the aid of molecular chaperones. However, if the damage to the protein is too great, the protein will generally undergo proteolysis. Opinion has been divided over the implication of prolonged use of electromagnetic devices to human health. Studies conducted on animals so far have given conflicting results. The studies on the separate components, electric and magnetic fields, also give inconclusive results. This indicates that our understanding on how electric and magnetic fields interact with biological matter is incomplete. In this project, we use molecular dynamics to explore the behaviour of two forms of insulin chain-B, isolated and monomeric (in the presence of chain-A with all disulfide bonds intact), at ambient conditions and under the influence of various stress. Specifically, we focus our attention to thermal stress and electric field stress. The electric field stress considered in this study takes several forms: static and oscillating with three different frequencies. These fields have strength ranging from 1806 V/m to 109 V/m. By performing molecular dynamics simulations totalling over 500 ns, we have gained valuable insights into the effects of elevated temperature and electric field on insulin chain-B. We observed differences in the damage mechanisms by the application of static electric field and oscillating field. The application of static fields restricts the conformational freedom of a protein, whereas the application of oscillating fields increases the mobility and flexibility of the protein, similar to the effect of thermal stress. Both of these interfere with the normal behaviour of a protein. We have also observed frequency-dependent effects, with low frequency fields having static field-like characteristics in damage mechanism.
|
3 |
Modeling Protein Folding PathwaysTowse, Clare-Louise, Daggett, V. 05 January 2015 (has links)
No / This chapter gives an introduction to protein simulation methodology aimed at experimentalists and graduate students new to in silico investigations. More emphasis is placed on the knowledge needed to select appropriate simulation protocols, leaving theoretical and mathematical depth for other texts to take care of. The chapter explains some of the more practical considerations of performing simulations of proteins, in particular, the additional considerations required when studying protein folding where nonnative environments are modeled. Forced unfolding simulations are highly relevant and invaluable in characterizing proteins naturally exposed to mechanical stress as a component of their biological function. The chapter illustrates this utility by discussing research that has been done primarily on the giant muscle protein titin. Using Molecular dynamics (MD) simulations to investigate protein folding faces two main challenges. The most obvious relates to the timescale of protein folding and the computational expense required for adequate sampling. / NIH
|
4 |
Analysis of Molecular Dynamics Trajectories of Proteins Performed using Different Forcefields and Identifiction of Mobile SegmentsKatagi, Gurunath M January 2013 (has links) (PDF)
The selection of the forcefield is a crucial issue in any MD related work and there is no clear indication as to which of the many available forcefields is the best for protein analysis. Many recent literature surveys indicate that MD work may be hindered by two limitations, namely conformational sampling and forcefields used (inaccuracies in the potential energy function may bias the simulation toward incorrect conformations). However, the advances in computing infrastructures, theoretical and computing aspects of MD have paved the way to carry out a sampling on a sufficiently longtime scale, putting a need for the accuracies in the forcefield. Because there are established differences in MD results when using forcefields, we have sought to ask how we could assess common mobility segments from a protein by analysis of trajectories using three forcefields in a similar environment. This is important because, disparate fluctuations appear to be more at flexible regions compared to stiff regions; in particular, flexible regions are more relevant to functional activities of the protein molecule. Therefore, we have tried to assess the similarity in the dynamics using three well-known forcefields ENCAD, CHARMM27 and AMBERFF99SB for 61 monomeric proteins and identify the properties of dynamic residues, which may be important for function. The comparison of popular forcefields with different parameterization philosophy may give hints to improve some of the currently existing agnostics in forcefields and characterization of mobile regions based on dynamics of proteins with diverse folds. These may also give some signature on the proteins at the level of dynamics in relation to function, which can be used in protein engineering studies.
Nanosecond level MD simulation(30ns) on 61 monomeric proteins were carried out using CHARMM and AMBER forcefields and the trajectories with ENCAD forcefield obtained from Dynameomics database. The trajectories were first analyzed to check whether structural and dynamic properties from the three forcefields similar choosing few parameters in each case. The gross dynamic properties calculated (root mean square deviation (RMSD), TM-score derived RMSD, radius of gyration and accessible surface area) indicated similarity in many proteins. Flexibility index analysis on 17 proteins, which showed a notable difference in the flexibility, indicated that tertiary interactions (fraction of nonnative stable hydrogen bonds and salt bridges) might be responsible for the difference in the flexibility index. The normalized subspace overlap and shape overlap score taken based on the covariance matrices derived from trajectories indicated that majority of the proteins show a range between 0.3-0.5 indicating that the first principal components from these proteins in different combinations may not match well. These results indicate that although dynamic properties in general are similar in many proteins. However, flexibility index and normalized subspace overlap score indicate that subspaces on the first principal component in many proteins may not match completely. The number of proteins showing a better correlation is higher in CHARMM-AMBER combinations than the other two.
The structural features from trajectories have been computed in terms of fraction of secondary structure, hydrogen bonds, salt bridges and native contacts. Although secondary structures and native contacts are well preserved during the simulations, the tertiary interactions (hydrogen bonds) are lost in many proteins and may be responsible for the difference in the some of properties among forcefields. Comparison of simulation results to experimental structures in terms of Root mean square fluctuations, Accessible surface area and radius of gyration indicates that the simulations results are on par with the ones derived from experimental structures.
We have tried to assess the flexibility in the proteins using normalized Root mean square fluctuations (nRMSF), which for a residue is the ratio of RMSF from simulation to that of crystal structure. We have selected a threshold for this nRMSF to indicate the mobile regions in a protein based on secondary structure analysis. Based on the threshold of nRMSF and conformational properties (deviation in the dihedral angles), we have classified the residue and evaluated the properties of rigid hinge residues and corresponding mobile residues in terms of residue propensity, secondary structure preference and accessible surface area ranges. Since the rigid dynamic residues represent the inherent mobility, they might be important for function. Therefore, we have tried to assess the functional relevance considering the dynamic mobile residues from each protein from each forcefield simulation with the residues important for the function (taken from literature and databases). It is observed that some residues found to be mobile from the simulation are found to match with the experimental ones, although in many cases the number of these mobile residues is higher compared to the experimental ones.
In summary, an analysis of protein simulation trajectories using three forcefields on a set of monomeric protein has shown that the gross structural properties and secondary structures from many proteins remain similar, but there are differences as may be seen from flexibility index. However correlation in parameters from CHARMM and AMBER force field is better compared to other two combinations. The differences seen in some of structural properties may arise mainly due to the loss of few tertiary interactions as indicated by the fraction of native hydrogen bonds and salt bridges. Based on the nRMSF, mobile segments obtained from the simulations were identified, and some of the mobile segments are found to match the functionally important residues from the experimental ones.
Our work indicates that there are still some differences in the properties from the simulations, which indicates that care must be exercised when choosing a forcefield, especially assessing the functionally relevant residues from the simulations.
|
Page generated in 0.0799 seconds