• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 490
  • 79
  • 40
  • 36
  • 23
  • 10
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 800
  • 800
  • 139
  • 134
  • 133
  • 127
  • 99
  • 79
  • 76
  • 69
  • 60
  • 49
  • 49
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Thermodynamical and structural properties of proteins and their role in food allergy

Rundqvist, Louise January 2013 (has links)
Proteins are important building blocks of all living organisms. They are composed of a defined sequence of different amino acids, and fold into a specific three-dimensional, ordered structure. The three-dimensional structure largely determines the function of the protein, but protein function always requires motion. Small movements within the protein structure govern the functional properties, and this thesis aims to better understand these discrete protein movements. The motions within the protein structure are governed by thermodynamics, which therefore is useful to predict protein interactions. Nuclear magnetic resonance (NMR) is a powerful tool to study proteins at atomic resolution. Therefore, NMR is the primary method used within this thesis, along with other biophysical techniques such as Fluorescence spectroscopy, Circular Dichroism spectroscopy and in silico modeling. In paper I, NMR in combination with molecular engineering is used to show that the folding of the catalytical subdomains of the enzyme Adenylate kinase does not affect the core of the protein, and thus takes a first step to linking folding, thermodynamic stability and catalysis. In paper II, the structure of the primary allergen from Brazil nut, Ber e 1, is presented along with biophysical measurements that help explain the allergenic potential of the protein. Paper III describes the need for a specific Brazil nut lipid fraction needed to induce an allergenic response. NMR and fluorescence spectroscopy is used to show that there is a direct interaction between Ber e 1 and one or several components in the lipid fraction.
212

C10 semi-peptoid beta-turn peptidomimetics: syntheses, characterization and biological studies

Nnanabu, Ernest 02 June 2009 (has links)
Over the years, the Burgess group has been focusing on the preparation and testing of small molecules that mimic protein secondary structures for protein-protein interactions. The most successful compounds made are C10 peptide macrocycles that effectively mimic β-turns and have given promising results from biological testing. These peptide macrocycles have also been dimerized to give even more effective ligands for protein-protein interaction. The successes of the peptide macrocycles have enabled us to look into increasing the chemical diversity of our libraries. This we believe will not only improve our ability to obtain high affinity ligands for the receptors of interest, but will also allow us to investigate other receptors. To achieve this, peptoids were incorporated into the C10 system to replace the peptides in the i+1 and i+2 positions. With the help of Microwave irradiation, semi-peptoid macrocycles were synthesized with a total reaction time of less than 2 h. These compounds were characterized and found to mimic β-turn, and show promising biological activity towards the Insulin-like growth factor 1 receptor (IGF-IR).
213

An investigation into the role of protein-ligand interactions on obligate and transient protein-protein interactions

Quinlan, Robert Jason 17 February 2005 (has links)
Protein-ligand and protein-protein interactions are critical to cellular function. Most cellular metabolic and signal tranduction pathways are influenced by these interactions, consequently molecular level understanding of these associations is an important area of biochemical research. We have examined the thermodynamics of several protein-protein associations and the protein-ligand interactions that mediate them. Using Fluorescence Correlation Spectroscopy, we have examined the putative interaction between pig heart malate dehydrogenase (MDH) and citrate synthase (CTS). We demonstrate a specific, low-affinity interaction between these enzymes. The association is highly polyethylene glycol (PEG)-dependent, and at high concentrations of NaCl or PEG, non-specific aggregates are formed. We demonstrate that oxaloacetate, the intermediate common to both CTS and MDH, induces the association at concentrations below the Km of CTS, suggesting that the open conformation of CTS is involved in the association. Using several biophysical techniques, we have examined the subunit associations of B. stearothermophilus phosphofructokinase (PFK). We demonstrate that the inhibitor bound conformation of the enzyme has reduced subunit affinity. The kinetics and thermodynamics of the phosphoenolpyrvuate (PEP)-induced dissociation of PFK have been quantified. Binding substrate, fructose-6-phosphate (F6P), stabilizes the enzyme to inhibitor-induced dissociation by 132-fold. These data suggest that subunit associations may play a role in the allosteric inhibition of PFK by PEP. The thermodynamics of the protein-ligand associations and allosteric inhibition of E. coli phosphofructokinase have been examined using intrinsic fluorescence and hydrostatic pressure. Both ligand-binding affinity and PEP inhibition are diminished by pressure, whereas substrate-binding affinity for inhibitor-bound enzyme is pressure-insensitive. Larger entropic than enthalpic changes with pressure lead to the overall reduction in free energies. Using a fluorescence-based assay, we have developed a series of baroresistant buffer mixtures. By combining a buffer with acid dissociation of negative volume with a buffer of positive volume, a pressure-resistant mixture is produced. Alteration of the molar ratio of the two component buffers yields mixtures that are pressure-insensitive at pH values around neutrality.
214

Peptidomimetics to mimic protein-protein interactions

Xia, Zebin 29 August 2005 (has links)
Quenched Molecular Dynamics (QMD) used to explore molecular conformations was developed to operate in Insight II platform for two simulation engines: CHARMm and Discover. Two scripts and procedures were written for molecular minimization, dynamics, minimization of each of several hundred conformers, and cut off. Experience with Insight II/Discover versus Quanta/CHARMm, and between Insight II/CHARMm versus Quanta/CHARMm has taught that the forcefield is the key factor in QMD studies. Protein A has been used for the purification of commercial antibodies, but it is expensive. Seven peptidomimetics of protein A were designed based on the hot-spots located at the helix-loop-helix region of protein A, and synthesized via solid phase using the Fmoc approach. These peptidomimetics were characterized by MS and NMR. The conformations of four peptidomimetics were studied by NMR and CD in water/hexafluoroisopropanol (pH 4). The CD and NMR data show that addition of hexafluoroisopropanol stabilizes their a-helical conformations. The structures of these peptidomimetics in solution were generated with Quanta/CHARMm using NMR data as limits for the QMD technique. Protein G has also been used to purify antibodies, but it is expensive too. A number of protein G mimics were designed as trivalent molecules. An efficient preparation of trivalent molecules having a useful primary amine arm has been developed through solid phase synthesis. The cheap, commercially available poly(propylene imine) dendrimers were used as scaffolds which allow multimerization of functionalized compounds. A small library of trivalent compounds were synthesized using this approach. A portion of compounds in this library were tested by Amersham Biosciences. The seven amino acid modified DAB-Am-4 exhibits strong binding to the IgG/Fab, and is a potential ligand for IgG purification. The interactions between neurotrophins (ie NGF and NT-3) and their receptors are typical drug targets. Fourteen second-generation peptidomimetics showing NGF-like or NT3-like activities in a preliminary bioassay, were resynthesized and tested again. Preliminary and retested data were compared. To access a direct binding assay, five fluorescently labeled peptidomimetics 41a-e were synthesized for a fluorescence activated cell sorting (FACScan) assay. Six monomeric precursors 42 and 43 were prepared on large scales for the library of bivalent turn analogs
215

Expression and characterisation of a gene encoding RbpD, an RNA-Binding protein in Anabaena sp. strain PCC 7120 /

Tremblay, Robin Lee, January 2000 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2000. / Bibliography: p. 158-173.
216

Structural characterization and domain dissection of human XAF1 protein, and application of solvent-exposed-amide spectroscopy in mapping protein-protein interface

Tse, Man-kit. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2010. / Includes bibliographical references (leaves 338-340). Also available in print.
217

Characterization of protein interactors of Arabidopsis acyl-coenzyme a-binding protein 2

Gao, Wei, January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2010. / Includes bibliographical references (leaves 204-224). Also available in print.
218

High resolution optical tweezers for single molecule studies of hierarchical folding in the pbuE riboswitch aptamer

Foster, Daniel. January 2010 (has links)
Thesis (M. Sc.)--University of Alberta, 2010. / Title from pdf file main screen (viewed on Jan. 27, 2010). A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science, Department of Physics, University of Alberta. Includes bibliographical references.
219

Structural characterization and domain dissection of human XAF1 protein, and application of solvent-exposed-amide spectroscopy in mapping protein-protein interface /

Tse, Man-kit. January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2010. / Includes bibliographical references (leaves 338-340). Also available online.
220

Characterization of protein interactors of Arabidopsis acyl-coenzyme a-binding protein 2 /

Gao, Wei, January 2009 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2010. / Includes bibliographical references (leaves 204-224). Also available online.

Page generated in 0.1058 seconds