• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and Functional Basis for the Autoregulation of the Adaptor Protein TOM1

Xiong, Wen 08 June 2020 (has links)
Target of Myb 1 (TOM1) is an endosomal adaptor protein that plays a role in cargo membrane trafficking for degradation by serving as an alternative endosomal sorting complex required for transport component. TOM1 has also been shown to serve as a novel phosphatidylinositol 5-phosphate (PtdIns5P) effector at signaling endosomes through its VHS domain, delaying cargo degradation in a bacterial infection model. The aim of this thesis is to clarify the structural and functional basis of the autoregulation mechanism of TOM1 to switch from endosomal protein trafficking to the bacterial survival signaling pathway. Our thermal denaturation and spectroscopic studies demonstrate that PtdIns5P reduced thermostability, interhelical contacts, and conformational compaction of TOM1 VHS. The thermodynamic studies indicate that TOM1 VHS endothermically binds to PtdIns5P through two potential noncooperative binding sites, with its acyl chains playing a relevant role in the interaction. These findings suggest that, under Shigella flexneri infection, TOM1 may interact with downstream effectors in a different VHS domain conformational state, thus involving the protein in bacterial survival signaling pathways. In order to obtain molecular details for the interaction of the TOM1 VHS domain for PtdIns5P and Ubiquitin (Ub), the backbone assignment information was obtained by performing NMR experiments, which assigned backbone 1H, 13C, and 15N resonances of the TOM1 VHS domain. With this structural information, our heteronuclear single quantum coherence and molecular dynamics simulations data revealed that TOM1 VHS interacts with PtdIns5P following a fast-exchange regime, with the PtdIns5P binding site predicted to be at a region spanning α-helices 6 to 8. Further mutagenesis and lipid-protein overlay assay studies indicated that K147 plays a critical role in the binding of TOM1 VHS domain to PtdIns5P. TOM1, unexpectedly, did not bind PtdIns5P. Using truncated forms of TOM1 protein, we discovered that neither TOM1 GAT domain nor the C-terminal domain modulated TOM1 VHS's PtdIns5P binding; however, surprisingly, a linker sequence between the TOM1 VHS and GAT domains exhibited an autoinhibition role for TOM1 binding to PtdIns5P. This linker region was observed to induce local conformational changes on the structure of TOM1 VHS domain, especially around α-helices 6 and 8, which are proposed to build up the binding pocket for PtdIns5P. In order to investigate whether the linker region between TOM1 VHS and GAT domain can also regulate the Ub association of TOM1 VHS domain, the binding properties of TOM1 and its domains to Ub were explored. Unexpectedly, the binding affinity of TOM1 VHS-linker for Ub was increased about 10-fold when compared with that for the TOM1 VHS domain, suggesting that the linker enhances the avidity of TOM1 for ubiquitinated cargo. Structural analysis indicated that the linker region may cap the conventional Ub-binding site of TOM1 VHS, thus forming a more compact structure. In summary, this study uncovered a novel intramolecular modulatory mechanism in TOM1 that regulates ligand recognition by its VHS domain. By providing the molecular basis of the TOM1 interactions, we may provide cargo sorting mechanistic insights, create functionally specific mutations, and precisely manipulate TOM1 function under bacterial infection conditions, and other yet-to-be-discovered PtdIns5P-dependent signaling pathways. / Doctor of Philosophy / Membrane trafficking is a delivery network established in a cell to transport proteins (cargoes) from one intracellular place to another one to control their activity. TOM1 is a protein involved in this process, which plays a role in transporting cargoes for degradation. Defects in this trafficking pathway lead to human diseases, such as immunodeficiency and neurodegeneration diseases. TOM1 has also been shown to be beneficial for bacterial survival in human cells. However, how TOM1 switches its role form protein trafficking to bacterial pathogenesis is still unclear. In our study, we discovered an internal region of TOM1 may serve as a switch to shift the role of TOM1 in human cells. In an "on" status, TOM1 favors to transport cargoes, while in an "off" status, TOM1 is used for bacteria survival. This study provides insights in the function of TOM1 which is beneficial for the design of novel therapeutic strategies against TOM1, which will prevent the progress of bacterial infections.
2

Molecular Modeling of the Amyloid β-Peptide: Understanding the Mechanism of Alzheimer's Disease and the Potential for Therapeutic Intervention

Lemkul, Justin A. 02 April 2012 (has links)
Alzheimer's disease is the leading cause of senile dementia in the elderly, and as life expectancy increases across the globe, incidence of the disease is continually increasing. Current estimates place the number of cases at 25-30 million worldwide, with more than 5.4 million of these occurring in the United States. While the exact cause of the disease remains a mystery, it has become clear that the amyloid β-peptide (Aβ) is central to disease pathogenesis. The aggregation and deposition of this peptide in the brain is known to give rise to the hallmark lesions associated with Alzheimer's disease, but its exact mechanism of toxicity remains largely uncharacterized. Molecular dynamics (MD) simulations have achieved great success in exploring molecular events with atomic resolution, predicting and explaining phenomena that are otherwise obscured from even the most sensitive experimental techniques. Due to the difficulty of obtaining high-quality structural data of Aβ and its toxic assemblies, MD simulations can be an especially useful tool in understanding the progression of Alzheimer's disease on a molecular level. The work contained herein describes the interactions of Aβ monomers and oligomers with lipid bilayers to understand the mechanism by which Aβ exerts its toxicity. Also explored is the mechanism by which flavonoid antioxidants may prevent Aβ self-association and destabilize toxic aggregates, providing insight into the chemical features that give rise to this therapeutic effect. / Ph. D.
3

Molecular basis of membrane protein production and intracellular membranes proliferation in E. coli / Base moléculaire de la production des protéines membranaires et de la formation des membranes intracellulaire dans Escherichia coli

Angius, Federica 13 October 2017 (has links)
Le système d’expression le plus utilisé pour la production des protéines membranaires, est le système basé sur l’ARN polymérase T7 (ARNpol T7) (Hattab et al., 2015). L'inconvénient de ce système est néanmoins que la vitesse de transcription de l’ARNpol T7 est dix fois plus rapide que celle de l’enzyme bactérienne. Depuis l’isolement de mutants spontanés, notamment C41 (DE3) et C43 (DE3) (Miroux et Walker, 1996) et l’identification de leurs mutations dans le génome, il apparaît clairement que la toxicité provoquée par la surproduction des protéines membranaires est liée à la quantité trop élevée d’ARNpol T7 dans la cellule (Wagner et al., 2008 ; Kwon et al., 2015). Les protéines membranaires ont besoin d’une vitesse de transcription/traduction plus basse pour se replier correctement dans la membrane de la bactérie. Le premier objectif de ma thèse était d’étendre l’amplitude du promoteur du système T7 sur laquelle est basée l’expression des protéines. Pour cela, nous avons isolé et caractérisé de nouvelles souches bactériennes dans lesquelles le niveau d’ARNpol T7 était efficacement régulé par un mécanisme non transcriptionnel très favorable à l’expression des protéines membranaires (Angius et al., 2016). Le deuxième objectif était de comprendre la prolifération des membranes intracellulaires chez E. coli suite à la surexpression de la protéine AtpF, une sous unité membranaire du complexe de l’ATP synthétase (Arechaga et al., 2000). Pour mieux comprendre les voies métaboliques impliquées dans la biogenèse, la prolifération et l’organisation des membranes, nous avons utilisé une approche de séquençage d’ARN à haut débit à différents temps après induction de la surexpression de la sous-unité AtpF dans la souche C43 (DE3). Ensuite, et en collaboration avec Gerardo Carranza and Ignacio Arechaga (Université de Cantabria, Espagne), nous avons construit et étudié des mutants de C43 (DE3) déficients pour les trois gènes codants pour des enzymes de la biosynthèse des cardiolipides afin d’évaluer leur participation dans la biogénèse des membranes intracellulaires / The most successful expression system used to produce membrane proteins for structural studies is the one based on the T7 RNA polymerase (T7 RNAP) (Hattab et al., 2015). However, the major drawback of this system is the overtranscription of the target gene due to the T7 RNAP transcription activity that is over ten times faster than the E. coli enzyme. Since the isolation of spontaneous mutants, namely C41(DE3) and C43(DE3) (Miroux and Walker, 1996) and the identification of their mutation in the genome, it becomes clear that reducing the amount of the T7 RNAP level removes the toxicity associated with the expression of some membrane proteins (Wagner et al., 2008; Kwon et al., 2015). Also, some membrane proteins require a very low rate of transcription to be correctly folded at the E. coli membrane. The first objective of my PhD was to extend the promoter strength coverage of the T7 based expression system. We used genetic and genomic approaches to isolate and characterize new bacterial strains (Angius et al., 2016) in which the level of T7 RNAP is differently regulated than in existing hosts. A second objective was to understand intracellular membrane proliferation in E. coli. Indeed it has been shown that over-expression of membrane proteins, like overexpression of AtpF of E. coli F1Fo ATP synthase is accompanied by the proliferation of intracellular membranes enriched in cardiolipids (Arechaga et al., 2000). To understand metabolic pathways involved in membrane biogenesis, proliferation and organization, we used a RNA sequencing approach at several time point upon over-expression of the F-ATPase b subunit in C43(DE3) host. On the other hand, in collaboration with Gerardo Carranza and Ignacio Arechaga (University of Cantabria, Spain) we studied C43(DE3) cls mutants, in which the cardiolipids genes A, B and C are deleted, to test how they participate to intracellular membranes structuration
4

Structural stability and lipid interactions in the misfolding of human apolipoprotein A-I: what makes the protein amyloidogenic?

Das, Madhurima 09 March 2017 (has links)
High-density lipoproteins and their major protein, apolipoprotein A-I (apoA-I), remove excess cellular cholesterol and protect against atherosclerosis. However, in acquired amyloidosis, non-variant full-length apoA-I deposits as fibrils in arteries contributing to atherosclerosis. In hereditary amyloidosis (AApoAI), a potentially fatal disease, N-terminal fragments of variant apoA-I deposit in vital organs and damage them. There is no cure for apoA-I amyloidosis and its structural basis is unknown. Previously, AApoAI mutations were mapped on the crystal structure of the human C-terminally truncated Δ(185-243)apoA-I. The results suggested that the mutation-induced destabilization of the lipid-free protein initiates β-aggregation. Our biophysical studies showed that amyloidogenic mutations G26R, W50R, F71Y and L170P did not necessarily destabilize the native structure, prompting us to search for additional triggers of apoA-I misfolding. We mapped residue segments predicted to promote β-aggregation (termed amyloid hot spots) on the atomic structure of ∆(185-243)apoA-I. The results suggested that perturbed packing of these hot spots, particularly residues 14-22, triggers amyloidosis. This enabled us to propose the first molecular mechanism of apoA-I misfolding. To explore a potential mechanism, we combined structural, stability, dynamics and functional studies of several amyloidogenic mutants and a non-amyloidogenic control, L159R. All mutants reduced structural protection of the segment 14-22, supporting our hypothesis that increased dynamics of this segment triggers AApoAI. The non-amyloidogenic mutant showed helical unfolding near the mutation site indicating susceptibility to proteolysis. We propose that the major factors that make apoA-I amyloidogenic are reduced protection of the major amyloidogenic segments combined with the structural integrity of the four-helix bundle to facilitate protein aggregation. Together, our results suggest that the fate of apoA-I in vivo depends on the balance between its misfolding, proteolysis, and protective protein-lipid interactions. Our structural and bioinformatics analysis of other members of the apolipoprotein family (A-II, A-IV, A-V, B, C-I, C-II, C-III, E, SAA) showed that apolipoproteins’ propensity to form amyloid is rooted in the proteins’ hydrophobicity, which is key to the lipid binding ability. The overlap of functional and pathologic interfaces suggests competition between normal protein function and misfolding. Therefore, increasing apolipoprotein retention on the lipid surface provides a potential therapeutic strategy against amyloidosis.
5

Phosphatidylinositol 3-phosphate binding properties and autoinhibition mechanism of Phafin2

Tang, Tuoxian 26 May 2021 (has links)
Phafin2 is a member of the Phafin protein family. Phafins are modular with an N-terminal PH (Pleckstrin Homology) domain followed by a central FYVE (Fab1, YOTB, Vac1, and EEA1) domain. Both the Phafin2 PH and FYVE domains bind phosphatidylinositol 3-phosphate [PtdIns(3)P], a phosphoinositide mainly found in endosomal and lysosomal membranes. Phafin2 acts as a PtdIns(3)P effector for endosomal cargo trafficking, macropinocytosis, apoptosis, and autophagy. The PtdIns(3)P binding activity is critical to the localization of Phafin2 on a specific membrane and, subsequently, helps the recruitment of other binding partners to the same membrane surface. However, there are no studies on the structural basis of PtdIns(3)P binding, the PtdIns(3)P-binding properties of each domain, and the apparent redundancy of two PtdIns(3)P binding domains in Phafin proteins. In the present dissertation, different biochemical and biophysical techniques were utilized to investigate the structural features of Phafin2 and its lipid interactions. This dissertation shows that Phafin2 is a moderately elongated monomer with a predicted α/β structure and ~40% random coil content. Phafin2 binds lipid bilayer-embedded PtdIns(3)P with high affinity; its PH and FYVE domains display distinct PtdIns(3)P-binding properties. Unlike the PH domain, the Phafin2 FYVE domain binds both membrane-embedded PtdIns(3)P and water-soluble dibutanoyl PtdIns(3)P with similar affinity. An intramolecular autoinhibition mechanism is found in Phafin2, in which a conserved C-terminal aspartic acid-rich (polyD) motif inhibits the binding of Phafin2 PH domain to PtdIns(3)P. The polyD motif specifically interacts with the Phafin2 PH domain. Using negative-stain Transmission Electron Microscopy, Phafin2 was found to cause membrane tubulation in a PtdIns(3)P-dependent manner. In conclusion, this study provides the structural and functional basis of Phafin2 lipid interactions and evidence of an intramolecular autoinhibition mechanism for PtdIns(3)P binding to the Phafin2 PH domain, which is mediated by the C-terminal polyD. The distinct PtdIns(3)P binding properties of the Phafin2 PH and FYVE domains may indicate that these two domains have different functions. Considering that the Phafin2 PH domain's PtdIns(3)P binding is intramolecularly regulated, cells may employ a unique mechanism to release the Phafin2 PH domain from the conserved C-terminal motif and control the functions of Phafin2 in PtdIns(3)P- and PH domain-dependent signaling pathways. / Doctor of Philosophy / Living cells need to absorb extracellular materials to sustain their growth and achieve cellular homeostasis. When cells require an uptake of liquids, they employ pinocytosis ("cell drinking"); when cells uptake solid particles, they use phagocytosis ("cell eating"); and when cells are in nutrient starvation status, they exploit an evolutionarily conserved process to survive known as autophagy ("self-eating"). Cells coordinate these activities through complex biochemical signaling systems. In each of these activities, a specific pathway is used to transfer the extracellular materials into the intracellular compartments and regulate the intracellular communications. Protein-lipid interactions are critical to these signaling pathways. This study focuses on the interactions between Phafin2 and phosphatidylinositol 3-phosphate [PtdIns(3)P]. Phafin2 is a cytoplasmic protein involved in autophagy, and PtdIns(3)P is a transient lipid signaling molecule localized to a specific organelle. After cells trigger autophagic events, Phafin2 protein molecules are associated with PtdIns(3)P. Subsequently, Phafin2 will recruit other protein binding partners. In this research project, biochemical and biophysical approaches were employed to study the structural features and PtdIns(3)P binding properties of Phafin2. Phafin2 was found to have two distinct PtdIns(3)P-binding domains; however, one of them is intramolecularly regulated. The results of this study help us to understand why Phafin2 displays two PtdIns(3)P-binding domains with different properties and how this is regulated, information that might be instrumental to understanding the roles of Phafin2 in physiological and disease scenarios.
6

A BIOPHYSICAL CHARACTERIZATION OF PROTEIN-LIPID INTERACTIONS OF THE LIPID DROPLET BINDING PROTEIN, PERILIPIN 3

Rathnayake, Sewwandi S. 01 August 2016 (has links)
No description available.
7

Structural basis for interactions of the Phytophthora sojae RxLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry

Sun, Furong 04 May 2012 (has links)
Oomycetes, such as Phytophthora sojae, are plant pathogens that employ protein effectors that enter host cells to facilitate infection. Plants may overcome infection by recognizing pathogen effectors via intracellular receptors (R proteins) that form part of their defense system. Entry of some effector proteins into plant cells is mediated by conserved RxLR motifs in the effectors and phosphoinositides (PIPs) resident in the host plasma membrane such as phosphatidylinositol 3-phosphate (PtdIns(3)P). Recent reports differ regarding the regions on RxLR effector proteins involved in PIP recognition. To clarify these differences, I have structurally and functionally characterized the P. sojae effector, avirulence homolog-5 (Avh5). Using NMR spectroscopy, I demonstrate that Avh5 is helical in nature with a long N-terminal disordered region. Heteronuclear single quantum coherence titrations of Avh5 with the PtdIns(3)P head group, inositol 1,3-bisphosphate (Ins(1,3)P2), allowed us to identify a C-terminal lysine-rich helical region (helix 2) as the principal lipid-binding site in the protein, with the N-terminal RxLR (RFLR) motif playing a more minor role. Furthermore, mutations in the RFLR motif slightly affected PtdIns(3)P binding, while mutations in the basic helix almost abolished it. Avh5 exhibited moderate affinity for PtdIns(3)P, which increased the thermal stability of the protein. Mutations in the RFLR motif or in the basic region of Avh5 both significantly reduced protein entry into plant and human cells. Both regions independently mediated cell entry via a PtdIns(3)P-dependent mechanism. My findings support a model in which Avh5 transiently interacts with PtdIns(3)P by electrostatic interactions mainly through its positively charged helix 2 region, providing stability to the protein during RFLR-mediated host entry. / Ph. D.
8

Characterizing the Innate Immune Response of Human Airway Cells to the Unique Fungal Allergen Alt a 1

Hayes, Tristan Alonzo 25 April 2017 (has links)
Allergic airway diseases such as rhinitis, asthma, and chronic rhinosinusitis are responsible for causing a huge economic burden on patients and society. Patients suffering from asthma often have allergies to pollen, dust mite, and mold. Interestingly, studies have shown that there is a correlation between severe asthma and sensitization to fungi including Aspergillus, Alternaria, Cladosporium, and Penicillium. This project has been focused on studying the innate immunomodulatory activities of the major allergen Alt a 1, from the ubiquitous airborne fungus, Alternaria alternata. In several studies, 90-100% of allergic patients who are sensitized to Alternaria, have Alt a 1 specific IgE antibodies indicating that it is a major and clinically relevant allergen. Although progress has been made over the past few decades regarding elucidating the mechanistic underpinnings of allergic inflammation, more research needs to be done, especially in regards to innate immunity and its role in the sensitization and exacerbation aspects of allergic diseases. Published studies have increasingly made it clear that Toll-like receptors (TLRs) are key players in innate immunity to several allergens. For example, the dust mite allergen, Der p 2, has been shown to mimic the activity of human and mouse MD2 in the presence of LPS to trigger a response through TLR4. Bet v 1, an allergen from Birch tree, has been shown to enter and be transported through lung epithelium in patient cells. It is hypothesized that transcytosis of allergens like Bet v 1 may contribute to sensitization and exacerbation in atopic individuals. This project was focused on two primary aims; (1) Characterize the innate immune response of Alt a 1 in human airway epithelial cells, and (2) Identify if and how Alt a 1 can enter human airway cells. We found that Alt a 1 was able to stimulate innate immune responses in bronchial epithelial cells and this was dependent upon TLR2, TLR4 and the downstream adaptor proteins MyD88 and TIRAP. We also found in our studies that Alt a 1 rapidly enters bronchial epithelial cells. Furthermore, our data suggests that endocytosis of Alt a 1 may be partially dependent upon interaction with phosphatidyl-inositol-3-phosphate (PI-3-P). / Ph. D.
9

Solid-state NMR spectroscopy to study protein-lipid interactions

Huster, Daniel 07 December 2015 (has links) (PDF)
The appropriate lipid environment is crucial for the proper function of membrane proteins. There is a tremendous variety of lipid molecules in the membrane and so far it is often unclear which component of the lipid matrix is essential for the function of a respective protein. Lipid molecules and proteins mutually influence each other; parameters such as acyl chain order, membrane thickness, membrane elasticity, permeability, lipid-domain and annulus formation are strongly modulated by proteins. More recent data also indicates that the influence of proteins goes beyond a single annulus of next-neighbor boundary lipids. Therefore, a mesoscopic approach to membrane lipid-protein interactions in terms of elastic membrane deformations has been developed. Solid-state NMR has greatly contributed to the understanding of lipid-protein interactions and the modern view of biological membranes. Methods that detect the influence of proteins on the membrane as well as direct lipid-protein interactions have been developed and are reviewed here. Examples for solid-state NMR studies on the interaction of Ras proteins, the antimicrobial peptide protegrin-1, the G protein-coupled receptor rhodopsin, and the K+ channel KcsA are discussed.
10

Nanoscale organization and dynamics of SNARE proteins in the presynaptic membranes

Milovanovic, Dragomir 05 October 2015 (has links)
No description available.

Page generated in 0.1415 seconds