• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 12
  • 10
  • 5
  • 1
  • Tagged with
  • 79
  • 51
  • 43
  • 16
  • 13
  • 13
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantitative approaches to understanding ediacaran ecology

Mitchell, Emily Geraldine Harmsworth January 2014 (has links)
No description available.
2

The geology and genesis of the Syama gold deposit, Mali, West Africa

Diarra, Pobanou Hughes January 1996 (has links)
No description available.
3

The petrology, geochemistry and association to ore formation of the host rocks of the Kiirunavaara magnetite-apatite deposit, northern Sweden

Blake, Kevin L. January 1992 (has links)
No description available.
4

Microfossils of eukaryotic cysts through time : A study of Precambrian-Ordovician organic-walled microbiota

Agić, Heda January 2014 (has links)
PhD project in Historical Geology and Palaeontology: Origin of Proterozoic-Cambrian photosynthetic microbiota
5

Nature and origin of Lewisian amphibolites of the Loch Maree group

Johnson, Yvonne Audrey January 1988 (has links)
No description available.
6

Geochemistry of neoproterozoic arc-related plutons in the Western margin of the Yangtze Block, South China

Zhao, Junhong, 趙軍紅 January 2008 (has links)
published_or_final_version / Earth Sciences / Doctoral / Doctor of Philosophy
7

Sedimentology, geochronology and geochemistry of the proterozoic sedimentary rocks in the Yangtze Block, South China

Wang, Wei, 王伟 January 2013 (has links)
The South China Craton comprises the Yangtze Block in the northwest and Cathaysia Block in the southeast. Located in the southeastern Yangtze Block, the Jiangnan Orogen formed through the amalgamation between the Yangtze and Cathaysia Blocks. The Yangtze Block has sporadically exposed Archean rocks in the north, Paleoproterozoic to Mesoproterozoic volcano-sedimentary sequences in the southwest and widespread Neoproterozoic sedimentary sequences accompanied by syn-sedimentary igneous rocks on the western and southeastern margins. The late Paleoproterozoic to early Mesoproterozoic Dongchuan, Dahongshan and Hekou groups in the southwestern Yangtze Block formed in a series of fault-controlled, rift-related basins associated with the fragmentation of the supercontinent Columbia. These sedimentary sequences were deposited between 1742 and 1503 Ma, and recorded continuous deposition from alluvial fan and fluvial sedimentation during the initial rifting to deep marine sedimentation in a passive margin setting. Sedimentation during initial rifting received felsic detritus mainly from adjacent continents, whereas sedimentation in a passive margin basin received detritus from felsic to intermediate rocks of the Yangtze Block. Paleoproterozoic to Mesoproterozoic rift basins in the southwestern Yangtze Block are remarkably similar to those of north Australia and northwestern Laurentia in their lower part (1742-1600 Ma), but significantly different after ca. 1600 Ma. The southwestern Yangtze Block was likely connected with the north Australia and northwestern Laurentia in Columbia but drifted away from these continents after ca. 1600 Ma. Traditionally thought Mesoproterozoic sedimentary sequences in the southeastern Yangtze Block are now confirmed to be Neoproterozoic in age and include the 835-830 Ma Sibao, Fanjingshan and Lengjiaxi groups, and 831-815 Ma Shuangqiaoshan and Xikou groups. These sequences are unconformably overlain by the ~810-730 Ma Danzhou, Xiajiang, Banxi, Heshangzheng, Luokedong and Likou groups. The regional unconformity likely marked the amalgamation between the Yangtze and Cathaysia Blocks and thus occurred at ~815-810 Ma. The lower sequences (835-815 Ma) received dominant Neoproterozoic (~980-820) felsic to intermediate materials in an active tectonic setting related to continental arc and orogenic collision, whereas the upper sequences represent sedimentation in an extensional setting with input of dominant Neoproterozoic granitic to dioritic materials (~740-900 Ma). The upper parts of the Shuangqiaoshan and Xikou groups, uncomfortably underlain by lower units, are molasse-type assemblages with additional input of pre-Neoproterozoic detritus, representing accumulation of sediments in a retro-arc foreland basin associated with the formation of the Jiangnan Orogen. Stratigraphic correlation, similarly low-δ18O and tectonic affinity of igneous rocks from different continents suggest that the Yangtze Block should be placed in the periphery of Rodinia probably adjacent to northern India. Paleoproterozoic (~2480 Ma and ~2000 Ma) and Early Neoproterozoic (711-997 Ma) were the most important periods of crustal and magmatic events of the southeastern Yangtze Block, but there is a lack of significant Grenvillian magmatism. Early Neoproterozoic magmatism highlights the contribution from both juvenile materials and pre-existing old crust, whereas ~2480 Ma and ~2000 Ma events are marked by reworking of pre-existing continental crust. Magmatism at 1600-1900 Ma was dominated by reworking of pre-existing crust, whereas the 1400-1600 Ma magmatic event recorded some addition of juvenile materials. / published_or_final_version / Earth Sciences / Doctoral / Doctor of Philosophy
8

The paleoproterozoic carbonate-hosted Pering lead-zinc deposit, South Africa

Greyling, Lynette Natasha 24 January 2012 (has links)
M. Sc. / The Pering Pb-Zn deposit is hosted in the stromatolitic dolomites of the Campbellrand Subgroup of the Ghaap Group, Transvaal Supergroup. The deposit is situated 20 km northeast of the town Reivilo in the semi-arid region of the Northwest Province, South Africa. It has been classified as a Mississippi Valley type deposit and is, together with the Bushy Park Pb-Zn deposit and F-Pb-Zn deposits near Zeerust, the only known MVT deposit of Paleoproterozoic age. The Pering open cast mine has been operational since 1986, yielding 18 Mt at an average ore grade of 3.6 wt.% Zn and 0.6 wt.% Pb. The aim of this study is to devise a metallogenetic model by integrating core logging, petrography, fluid inclusion and stable C-0-S isotope studies. The mineralogy includes sphalerite, galena and minor chalcopyrite as ore minerals, with diagenetic pyrite, hydrothermal dolomite, quartz and calcite as gangue minerals. Sphalerite predominates over galena. Mineralisation occurs as (a) disseminated stratabound replacements sheets restricted mainly to stromatolitic zones of the Steekdorings Member of the Reivilo Formation, and as (b) open space infill in breccia bodies that cross-cut the stratigraphy. Three events of hydrothermal brecciation, resultant of prolonged pulses of fluid infiltration, and mineralisation are recognised. The first brecciation event is marked by the cementation of the dolomite host rock by sparry dolomite, closely associated with finegrained disseminated sphalerite and galena. The second brecciation event is of minor importance, and is marked by the formation of small amounts of the second sphalerite generation, while the third, and final, brecciation event is marked by the formation of euhedral sphalerite, galena, quartz, sparry dolomite, and calcite as open space fill.
9

Mid-Proterozoic Evolution of the Grenville Belt: Evidence from Neodymium Isotopic Mapping, Bancroft, Ontario

Martin, Christopher 04 1900 (has links)
<p> Detailed Neodymium isotopic mapping was performed on grey gneisses from the Algonquin Park area of Ontario, in the Central Gneiss Belt of the southwestern Grenville Province. The Neodymium model ages determined were based upon the Depleted Mantle Model of DePaolo ( 1981c ) . The use of this model is supported by Lead-Lead dating of zircons obtained from an orthogneissic sample. </p> <p> The wide range of model ages found ( 1.5 - 1.86 Ga ) is attributed to the presence of a northwestward dipping, Andean style, ensialic continental margin arc that was active in the Mid-Proterozoic between 1.50 Ga and 1.65 Ga. The diapiric rise of plutons produced by the subduction zone intruded continental margin at least as old as 1.86 Ga as indicated by the oldest pluton in the field area. Variable amounts of mixing occurred between these orogenic rocks and the existing crustal rocks as illustrated by the variable Neodymium model ages determined for grey gneisses collected between 10 Km and 60 Km north of the Central Metasedimentary Belt Boundary Zone. Major element analysis and subsequent tectonic and petrographic discrimination diagrams such as the AFM plot and the granitoid discrimination diagram of LeFort and Debon ( 1983 ) also indicate that the rocks in the Algonquin Park area are calc-alkaline, and are similar to the Peruvian Coastal Batholith. </p> <p> For grey gneisses analyzed within 10 Km of the Central Metasedimentary Belt Boundary Zone, the range of ages is far more restricted, suggesting that an island arc approximately 1.45 Ga was transported by the subducting slab and later sutured onto the existing continental margin. </p> / Thesis / Bachelor of Science (BSc)
10

Structural geology of the Usakos Dome in the Damara Belt, Namibia

Johnson, Shannon D. 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2005. / ENGLISH ABSTRACT: The northeast-trending south Central Zone (sCZ) of the Pan-African Damara belt in central Namibia is structurally characterized by kilometer-scale, northeast-trending dome structures developed in Neoproterozoic rocks of the Damara Sequence. A number of different structural models have been proposed for the formation of these domes in the literature. This study describes the structural geology of the Usakos dome. The study discusses the structural evolution of the dome within the regional framework of the cSZ that represents the high-grade metamorphic axis of the Damara Belt, characterized by voluminous Pan-African granitoids. The northeastern part of the Usakos dome is developed as an upright- to northwestverging anticlinorium containing a steep southeasterly-dipping axial planar foliation. The northeast fold trend persists into the southwestern parts of the Usakos dome. However, this southwestern core of the dome is inundated by synkinematic granitic sheets. Distinct marker horizons of the Damara Sequence outcrop as screens within the granite, preserving a ghost stratigraphy. These screens illustrate the position and orientation of second-order folds. Significantly, most of the stratigraphy of the Damara Sequence is overturned in these folds. For example, some second-order anticlines developed in the northeastern parts of the Usakos dome can be followed along their axial traces into the southwestern hinge of the dome, where they appear as synformal anticlines, i.e. synformal structures cored by older strata, plunging towards the northeast. The inverted stratigraphy and northeasterly fold plunges suggest the northeast-trending folds are refolded by second-generation, northwest-trending folds, thus, forming kilometer-scale Type-2 interference folds. The resulting fold geometries are strongly non-cylindrical, approaching southwest-closing sheath folds indicating a top-to-the-southwest material transport. Lower-order folds in this overturned domain show radial fold plunges, plunging away from the centre of the dome core, as well as a shallowly-dipping schistosity. The close spatial and temporal relationship between granite intrusion and the formation of the southwest-vergent, sheath-type folds, radial distribution of fold plunges and the subhorizontal foliation confined to the southwestern hinge of the Usakos dome are interpreted to signify the rheological weakening and ensuing collapse of the developing first-order Usakos dome immediately above the synkinematic granite intrusions. Orogenparallel, southwest-vergent sheath folds and top-to-the southwest extrusion of the southwestern parts of the Usakos dome and northwest-vergent folding and thrusting characterizing the northeastern extent of the Usakos dome are both responses to the northwest-southeast- directed contractional tectonics recorded during the main collisional phase in the Damara belt. On a regional scale, the Usakos dome represents the link between the foreland-vergent northeastern part of the sCZ and the southwest-vergent, high-grade southwestern parts of the sCZ. The results of this study illustrate how dramatic variations in structural styles may be caused by the localized and transient rheological weakening of the crust during plutonic activity. / AFRIKAANSE OPSOMMING: Die noordoos-strekkende, suidelike Sentrale Sone (sSS) van die Pan-Afrikaanse Damara gordel in sentraal Namibië word karakteriseer deur kilometer-skaal, noordoosstrekkende koepel strukture, ontwikkel in die Neoproterozoïkum gesteentes van die Damara Opeenvolging. 'n Aantal verskillende struktuur modelle is voorgestel in die literatuur vir die vorming van hierdie koepels. Hierdie ondersoek beskryf die struktuur geologie van die Usakos koepel. Die ondersoek bespreek die strukturele ontwikkeling van die koepel in die regionale konteks van die sSS, wat die hoë graadse metamorfe magmatiese as van die Damara Gordel verteenwoordig, en karakteriseer word deur omvangryke Pan-Afrikaanse granitoïede. Die noordoostelike gedeelte van die Usakos koepel is ontwikkel as 'n antiklinorium met 'n vertikale- tot noordwestelike kantelrigting. wat 'n steil hellende, suidoostelike asvlak planêre foliasie bevat. Die noordoos-strekkende plooiing kom voor tot in die suidwestelike kern van die Usakos wat ingedring is deur sinkinematiese granitiese plate. Die posisie en oriëntasie van tweede-orde plooie is afgebeeld in die graniete deur 'n skimstratigrafie wat preserveer is deur duidelike merker horisonne van die Damara Opeenvolging. Die stratigrafie van die Damara Opeenvolging is opmerklik meestal omgekeer in hierdie plooie. Byvoorbeeld, tweede-orde antikliene ontwikkel in die noordoostelike gedeelte van die Usakos koepel kan gevolg word langs hul asvlakspore tot in die suidwestelike skarnier van die koepel, waar dit voorkom as sinforme antikliene, d.w.s. sinforme strukture met ouer strata in die kern wat na die noordooste duik. Die omgekeerde stratigrafie en noordoostelike plooi duiking impliseer dat die noordoosstrekkende plooie weer geplooi is deur tweede-generasie, noordwes-strekkende plooie, wat dus aanleiding gegee het tot die vorming van kilometer-skaal, tipe-2 interferensie plooie. Die gevolglike plooi geometrieë is uitdruklik nie-silindries, en toon 'n oorgang na skede plooie met 'n sluiting na die suidweste, wat dui op 'n bokant-na-die-suidweste materiaal vervoer. Laer-orde plooie in die omgekeerde domein vertoon radiale duiking van die plooie, weg van die middelpunt van die koepel kern, sowel as 'n vlak hellende skistositeit. Die noue ruimtelike en temporele verwantskap tussen graniet intrusie en die vorming van skede-tipe plooie met 'n kantelrigting na die suidweste, die radiale verspreiding van plooi duiking, en die subhorisontale foliasie wat beperk is tot die suidwestelike skarnier van die Usakos koepel, word interpreteer as 'n aanduiding van die reologiese verswakking en die gevolglike ineenstorting van die ontwikkelende eerste-orde Usakos koepel, onmiddellik aan die bokant van die sinkinematiese graniet intrusies. Die orogeenparalleie skede plooie met kantelrigting na die suidweste en bokant-na-die-suidweste ekstrusie van die suidwestelike gedeelte van die Usakos koepel, en plooiing met kantelrigting na die noordweste en stootverskuiwing wat kenmerkend is van die noordoostelike gedeelte van die Usakos koepel, is beide 'n reaksie op die noordwessuidoos- gerigte vernouings tektoniek opgeteken gedurende die hoof botsings fase in die Damara gordel. Op 'n regionale skaal verteenwoordig die Usakos koepel die verbinding tussen die noordoostelike gedeelte van die sSS met 'n voorland kantelrigting. en die hoë graad suidwestelike gedeelte van die sSS met 'n kantelrigting na die suidweste. Die resultate van hierdie ondersoek toon aan hoe dramatiese variasies in struktuur style veroorsaak kan word deur die gelokaliseerde en kortstondige reologiese verswakking van die kors gedurende plutoniese aktiwiteit.

Page generated in 0.0462 seconds