Spelling suggestions: "subject:"protocol"" "subject:"aprotocol""
431 |
A new TCP protocol based on end-to-end available bandwidth measurement /Wu, Chen. January 2005 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references (leaves 86-90). Also available in electronic version.
|
432 |
TCP adaptation schemes in heterogeneous and ad hoc wireless networksLi, Zhi, January 2005 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2005. / Title proper from title frame. Also available in printed format.
|
433 |
An evaluation of realistic TCP traffic in satellite networksNarasimhan, Priya. January 2002 (has links)
Thesis (M.S.)--Ohio University, August, 2002. / Title from PDF t.p.
|
434 |
Multimedia streaming using multiple TCP connections /Tullimalli, Sunand. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 62-63). Also available on the World Wide Web.
|
435 |
An investigation into the initial validity of the Canterbury Behaviour Screening Protocol (CBSP) : a pilot study : a dissertation submitted in partial fulfilment of the requirements for the degree of Master of Health Sciences (Early Intervention) /Smyth, A. M. January 2006 (has links)
Thesis (M. Heal. Sc.)--University of Canterbury, 2006. / Typescript (photocopy). Includes bibliographical references (leaves 63-67). Also available via the World Wide Web.
|
436 |
Modeling and analysis of stochastic self-similar processes and TCP/IP congestion control in high-speed computer communication networks /Alazemi, Hamed M. K. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 111-119).
|
437 |
Comparative evaluation of the Mobile Protocol 6 SuitePieterse, Johan 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Mobile IPv6 is a proposed mobility standard for Next Generation Wireless
Access Networks that allows mobile nodes, such as laptops, tablets, smart
phones to stay reachable while moving around in an IPv6 Internet network.
The need for MIPv6 exists because a mobile device cannot maintain the previously
connected link when changing location and IP address. The initial IP
Mobility protocol was first presented in 1993 for IPv4 and in 2004 for IPv6.
The Mobile IP protocol solves the TCP/IP Stack Layer 3 mobility issue, by
assigning a permanent IP Home Agent address to the mobile node. IPv4 has
some drawbacks, the main one being IP address exhaustion, making MIPv6
the future option for mobility protocol in IP Networks.The main goal of the
mobility protocol is to enable network applications to operate continuously at
the required quality of service for both wired and wireless networks while the
mobile node moves around in the network.
MIPv6 on its own needs optimization techniques to improve the handover
latency of the protocol and to minimize the latency. This thesis investigates
MIPv6 simulated using OMNeT++ Network Simulator Framework and the
implementation thereof on a Linux IPv6 test bed. The test bed was used to
test handover latency, overhead added by the MIPv6 extensions and packet
loss. The developed test set up can also be used to evaluate different handover
schemes that might enhance the MIPv6 protocol, decreasing handover latency
and enabling real-time IPv6 applications such as Voice over IP. FMIPv6 and
PMIPv6 are extensions to MIPv6 to enhance it's functionality. These protocols
are investigated and evaluated against MIPv6 in order to make recommendations
on possible improvements of these mobility protocols. / AFRIKAANSE OPSOMMING: Mobiele IPv6 is 'n voorgestelde standaard vir mobiele netwerke of die sogenaamde
Volgende Generasie Netwerke wat mobiele nodes sal toelaat om bereikbaar
te bly wanneer die nodes rondbeweeg in 'n IPv6 Internet omgewing.
Die behoefte aan 'n kontinue netwerksessie is baie groot en dit kan toegeskryf
word aan die vinnige toename in mobiele nodes, soos skootrekenaars, tablette
en slimfone. Die oorspronklike IP Mobiele protokol was voorgestel in 1993 vir
IPv4 en in 2004 vir IPv6. Mobiele IP dien as 'n oplossing vir netwerk mobiliteit
deur te fokus op Laag 3 van die TCP/IP Stapel. Kontinue sessies word
bereik deur 'n permanente Basis Adres aan die mobiele node te bind. IPv4 het
heelwat nadele, waarvan die grootste een verseker IP adres uitputting is, ander
nadele sluit in driehoekige roetering en invloei filtering wanneer die mobiele
node rondbeweeg. Weens die genoemde nadele van MIPv4 en die stelselmatige
oorgang van IPv4 na IPv6 word die fokus gerig op MIPv6 vir toekomstige
verbetering en implementering. Die hoofdoel van MIPv6 is om te sorg dat
mobiele nodes kan rondbeweeg in 'n network sonder om netwerk konneksie te
verloor en ook om die gehalte van diens te handhaaf.
MIPv6 benodig addisionele optimalisering tegnieke om die oorhandigings
latensie van die protokol te verbeter en dus die gehalte van diens ook te verbeter.
In die tesis ondersoek ons die elemente wat oorhandigingstydperk beinvloed
en verhoog, deur MIPv6 in 'n OMNeT++ Simuleerder te evalueer.
Nadat die nodige simulasie resultate verkry is, word MIPv6 geimplementeer
op 'n toets netwerk om die oorhandigingstydperk te toets wanner die node
rondbeweeg, oorhoofse inligting wat bygevoeg word deur MIPv6 en die aantal
netwerk pakkies wat verlore gaan tydens die oorhandigingsproses. Hierna word die optimalisering tegnieke genaamd PMIPv6 en FMIPv6 ook geimplementeer
op die toets netwerk om die e ektiwiteit en optimaliserings voordele teenoor
die toets resultate van MIPv6 te vergelyk. Die resultate kan gebruik word om
verbeterings en voorstelle te maak rakende die mobiele protokols.
|
438 |
An Efficient Network Management System using Agents for MANETsChannappagoudar, Mallikarjun B January 2017 (has links) (PDF)
Network management plays a vital role to keep a network and its application work e ciently. The network management in MANETs is a crucial and the challenging task, as these networks are characterized by dynamic environment and the scarcity of resources. There are various existing approaches for network management in MANETs.
The Ad hoc Network Management Protocol (ANMP) has been one of the rst e orts and introduced an SNMP-based solution for MANETs. An alternative SNMP-based solu-tion is proposed by GUERRILLA Management Architecture (GMA). Due to self-organizing characteristic feature of MANETs, the management task has to be distributed. Policy-based network management relatively o ers this feature, by executing and applying policies pre-viously de ned by network manager. Otherwise, the complexity of realization and control becomes di cult
Most of the works address the current status of the MANET to take the network man-agement decisions. Currently, MANETs addresses the dynamic and intelligent decisions by considering the present situation and all related history information of nodes into consid-eration. In this connection we have proposed a network management system using agents (NMSA) for MANETs, resolving major issues like, node monitoring, location management, resource management and QoS management. Solutions to these issues are discussed as inde-pendent protocols, and are nally combined into a single network management system, i.e., NMSA.
Agents are autonomous, problem-solving computational entities capable of performing e ective operation in dynamic environments. Agents have cooperation, intelligence, and mobility characteristics as advantages. The agent platforms provide the di erent services to agents, like execution, mobility, communication, security, tracking, persistence and directory etc. The platform execution environment allows the agents to run, and mobility service allows them to travel among the di erent execution environments. The entire management task will be delegated to agents, which then executes the management logic in a distributed and autonomous fashion. In our work we used the static and mobile agents to nd some solutions to the management issues in a MANET.
We have proposed a node monitoring protocol for MANETs, which uses both static agent (SA) and mobile agents (MA), to monitor the nodes status in the network. It monitors the gradational energy loss, bu er, bandwidth, and the mobility of nodes running with low to high load of mobile applications. Protocol assumes the MANET is divided into zones and sectors. The functioning of the protocol is divided into two segments, The NMP main segment, which runs at the chosen resource rich node (RRN) at the center of a MANET, makes use of SA which resides at same RRN, and the NMP subsegment which runs in the migrated MAs at the other nodes. Initially SA creates MAs and dispatches one MA to each zone, in order to monitor health conditions and mobility of nodes of the network. MAs carrying NMP subsegment migrates into the sector of a respective zone, and monitors the resources such as bandwidth, bu er, energy level and mobility of nodes. After collecting the nodes information and before moving to next sector they transfer collected information to SA respectively. SA in turn coordinates with other modules to analyze the nodes status information.
We have validated the protocol by performing the conformance testing of the proposed node monitoring protocol (NMP) for MANETs. We used SDL to obtain MSCs, that repre-sents the scenario descriptions by sequence diagrams, which in turn generate test cases and test sequences. Then TTCN-3 is used to execute the test cases with respect to generated test sequences to know the conformance of protocol against the given speci cation.
We have proposed a location management protocol for locating the nodes of a MANET, to maintain uninterrupted high-quality service for distributed applications by intelligently anticipating the change of location of its nodes by chosen neighborhood nodes. The LMP main segment of the protocol, which runs at the chosen RRN located at the center of a MANET, uses SA to coordinate with other modules and MA to predict the nodes with abrupt movement, and does the replacement with the chosen nodes nearby which have less mobility.
We have proposed a resource management protocol for MANETs, The protocol makes use of SA and MA for fair allocation of resources among the nodes of a MANET. The RMP main segment of the protocol, which runs at the chosen RRN located at the center of a MANET, uses SA to coordinate with other modules and MA to allocate the resources among the nodes running di erent applications based on priority. The protocol does the distribution and parallelism of message propagation (mobile agent with information) in an e cient way in order to minimize the number of message passing with reduction in usage of network resources and improving the scalability of the network.
We have proposed a QoS management protocol for MANETs, The QMP main segment of the protocol, which runs at the chosen RRN located at the center of a MANET, uses SA to coordinate with other modules and MA to allocate the resources among the nodes running di erent applications based on priority over QoS. Later, to reallocate the resources among the priority applications based on negotiation and renegotiation for varying QoS requirements. The performance testing of the protocol is carried out using TTCN-3. The generated test cases for the de ned QoS requirements are executed with TTCN-3, for testing of the associated QoS parameters, which leads to performance testing of proposed QoS management protocol for MANETs.
We have combined the developed independent protocols for node monitoring, location management, resource management, and QoS management, into one single network management system called Network Management System using Agents (NMSA) for MANETs and tested in di erent environments. We have implemented NMSA on Java Agent development environment (JADE) Platform.
Our developed network management system is a distributed system. It is basically divided into two parts, the Network Management Main Segment and other is Network Management Subsegment. A resource rich node (RRN) which is chosen at the center of a MANET where the Main segment of NMSA is located, and it controls the management activities. The other mobile nodes in the network will run MA which has the subsegments of NMSA. The network management system, i.e., the developed NMSA, has Network manage-ment main (NMSA main), Zones and sector segregation scheme, NMP, LMP, RMP, QMP main segments at the RRN along with SA deployed. The migrated MA at mobile node has subsegments of NMP, LMP, RMP, and QMP respectively. NMSA uses two databases, namely, Zones and sectors database and Node history database.
Implementation of the proposed work is carried out in a con ned environment with, JDK and JADE installed on network nodes. The launched platform will have AMS and DF automatically generated along with MTP for exchange of message over the channel. Since only one JVM, which is installed, will executes on many hosts in order to provide the containers for agents on those hosts. It is the environment which o ered, for execution of agents. Many agents can be executed in parallel. The main container, is the one which has AMS and DF, and RMI registry are part of JADE environment which o ers complete run time environment for execution of agents. The distribution of the platform on many containers of nodes is shown in Fig. 1.
The NMSA is based on Linux platform which provides distributed environment, and the container of JADE could run on various platforms. JAVA is the language used for code development. A middle layer, i.e., JDBC (java database connection) with SQL provides connectivity to the database and the application.
The results of experiments suggest that the proposed protocols are e ective and will bring, dynamism and adaptiveness to the applied system and also reduction in terms network overhead (less bandwidth consumption) and response time.
|
439 |
Enabling Curricula: The Development of a Teaching Observation Protocol to Address Students' Diverse Learning NeedsHayden, Sharon Angella 01 December 2011 (has links)
AN ABSTRACT OF THE DISSERTATION OF Sharon Angella Hayden, for the Doctor of Philosophy degree in Education, presented on July, 25th, 2011, at Southern Illinois University Carbondale. TITLE: ENABLING CURRICULA: THE DEVELOPMENT OF A TEACHING OBSERVATION PROTOCOL TO ADDRESS STUDENTS' DIVERSE LEARNINNG NEEDS MAJOR PROFESSORS: Dr. Grant R. Miller and Dr. D. John McIntyre Diverse learning needs are students' learning needs in areas such as language, learning styles, background, disabilities, technology skills, motivation, engagement, and access. Teacher candidates must be aware of and plan to meet these needs. The Universal Design for Learning (UDL) provides guidelines that can increase the level of student engagement and variety in materials and activities incorporated in a lesson, and will improve the extent to which teacher candidates meet students' diverse learning needs. This research incorporated design research and systematic observation methodologies and was informed by data from lesson observations collected with the proposed observation protocol. It also relied on data from a focus group discussion with cooperating teachers, email feedback from university supervisors, and document analysis of lesson plans and materials. Analysis of this data showed that teacher candidates' perceptions about diverse learning needs were informed by the school's curriculum, the subject area they taught, their experiences, and theories such as multiple intelligences. Their perceptions were modified during the study which also resulted in changes in the way they planned and taught their lessons. Participants found the proposed observation protocol to be both clear and useful. It is proposed that teacher candidates, cooperating teachers, and university supervisors should be informed about the Universal Design for Learning. It is expected that the observation protocol will be incorporated into methodology courses, as well as in teacher candidate conferences with university supervisors. It is also expected that future research will incorporate university supervisors and cooperating teachers in the implementation of the observation protocol. Future research is also expected to explore the possibility of developing a subject-specific observation protocol for use at the secondary level.
|
440 |
Cross Continental Access of Information and the Boarder Gateway ProtocolFrisk, Johan January 2019 (has links)
The usage of technical equipment and the interconnection of all these devices has become essential to our every day life and to provide as good service as possible for the internet of today. However, many have the opportunity to inspect the data as it is being rushed across the globe to provide users with information at the press of a button. This study examines the routing patterns from hundred thousands of trace routes going from user to server around the globe. Using this trace data, we demonstrate not only the number of companies involved in data transfers on other continents then where they are currently not residing, but also give some insight into the amount of routes pertaining to same continent data transfers which takes paths not contained within that same continent. In doing so, we try to explain the inner workings of the protocols used within the process of data transfer, answer a number of security related questions regarding the protocols used, as well as discuss which other circumstances can affect the decision making process.
|
Page generated in 0.0381 seconds