Spelling suggestions: "subject:"protocol design"" "subject:"aprotocol design""
21 |
Dynamic Composition and Management of Virtual Devices for Ad Hoc Multimedia Service DeliveryKarmouch, Eric January 2011 (has links)
Pervasive computing implies the invisibility of the technology involved in providing ubiquity, such that technology is integrated into the environment and non-intrusive. In such a manner, computing and networking resources become diffused into physical environments, enabling users to exploit their provided functionalities such that functionality is distributed, enabling it to be controlled, monitored, managed, and extended beyond what it was initially designed to do. Moreover, computer awareness moves towards user-centricity, whereby systems seamlessly adapt to the characteristics, preferences, and current situations of users and their respective surrounding environments. Users exploit such functionalities in the form of a virtual device, whereby a collection of heterogeneous devices in the vicinity of the user are behaving as one single homogeneous device for the benefit of the user in solving some given task.
This dissertation investigates the problem of dynamic composition and management of virtual devices for ad hoc multimedia service delivery and proposes an autonomous policy driven framework for virtual device management. The framework consists of a hierarchical structure of distributed elements, including autonomic elements, all working towards the self-management of virtual devices. The research presented in this dissertation addresses the functionalities of these components.
More specifically, contributions are made towards the autonomous management of virtual devices, moving away from infrastructure based schemes with heavy user involvement to decentralized and zero touch (i.e., no user involvement) solutions. In doing so, the components and methodology behind a policy-driven autonomous framework for the dynamic discovery, selection, and composition of multimodal multi-device services are presented. The framework operates in an ad hoc network setting and introduces a Service Overlay Network (SON) based definition of a virtual device.
Furthermore, device and service discovery, composition, integration, and adaptation schemes are designed for Mobile Ad hoc Network Environments (MANETs) enabling users to generate, on-the-fly, complex strong specific systems, embedding in a distributed manner, QoS models providing compositions that form the best possible virtual device at the time of need.
Experimental studies are presented to demonstrate the performance of the proposed schemes.
|
22 |
Design and Performance Evaluation of Service Discovery Protocols for Vehicular NetworksAbrougui, Kaouther January 2011 (has links)
Intelligent Transportation Systems (ITS) are gaining momentum among researchers. ITS encompasses several technologies, including
wireless communications, sensor networks, data and voice communication, real-time driving assistant systems, etc. These states of the art technologies are expected to pave the way for a plethora of vehicular network applications. In fact, recently we have witnessed a growing interest in Vehicular Networks from both the research community and industry. Several potential applications
of Vehicular Networks are envisioned such as road safety and security, traffic monitoring and driving comfort, just to mention a few. It is critical that the existence of convenience or driving comfort services do not negatively affect the performance of safety services. In essence, the dissemination of safety services or the discovery of convenience applications requires the communication among service providers and service requesters through constrained bandwidth resources. Therefore, service discovery techniques for vehicular networks must efficiently use the available common resources.
In this thesis, we focus on the design of bandwidth-efficient and scalable service discovery protocols for Vehicular Networks. Three types of service discovery architectures are introduced: infrastructure-less, infrastructure-based, and hybrid architectures.
Our proposed algorithms are network layer based where service discovery messages are integrated into the routing messages for a
lightweight discovery. Moreover, our protocols use the channel diversity for efficient service discovery. We describe our algorithms and discuss their implementation. Finally, we present the main results of the extensive set of simulation experiments that have been used in order to evaluate their performance.
|
23 |
A Reference Model and Architecture for Future Computer NetworksHassan, Hoda Mamdouh 15 July 2010 (has links)
The growing need for a trustworthy Future Internet demands evolutionary approaches unfettered by legacy constrains and concepts. The networking community is calling for new network architectural proposals that address the deficiencies identified in present network realizations, acknowledge the need for a trustworthy IT infrastructure, and satisfy the society's emerging and future requirements. Proposed architectures need to be founded on well-articulated design principles, account for network operational and management complexities, embrace technology and application heterogeneity, regulate network-inherent emergent behavior, and overcome shortcomings attributed to present network realizations.
This dissertation presents our proposed clean-slate Concern-Oriented Reference Model (CORM) for architecting future computer networks. CORM stands as a guiding framework from which network architectures can be derived according to specific functional, contextual, and operational requirements or constraints. CORM represents a pioneering attempt within the network realm, and to our knowledge, CORM is the first reference model that is bio-inspired and derived in accordance with the Function-Behavior-Structure (FBS) engineering framework.
CORM conceives a computer network as a software-dependent complex system whose design needs to be attempted in a concern-oriented bottom-up approach along two main dimensions: a vertical dimension addressing structure and configuration of network building blocks; and a horizontal dimension addressing communication and interactions among the previously formulated building blocks. For each network dimension, CORM factors the design space into function, structure, and behavior, applying to each the principle of separation of concerns for further systematic decomposition.
In CORM, the network-building block is referred to as the Network Cell (NC), which represents CORM's first basic abstraction. An NC's structure and inherent behavior are bio-inspired, imitating a bacterium cell in a bacteria colony, thus it is capable of adaptation, self-organization and evolution. An NC's functional operation is defined by CORM second basic abstraction; the ACRF framework. The ACRF framework is a conceptual framework for network-concerns derived according to our interpretation of computer network requirement specifications. CORM networks are recursively synthesized in a bottom-up fashion out of CORM NCs. CORM addresses the multi-dimensionality of computer networks by modeling the network structure and behavior using a network structural template (NST), and an information flow model (IFM), respectively. Being developed according to a complex system paradigm, CORM refutes the long endorsed concept of layering, intrinsically accounts for emergent behavior, and ensures system integrity and stability.
As a reference model, CORM is more typical of conventional engineering. Therefore it was validated using the FBS engineering framework. However, the behavior to be realized in CORM-based networks was substantiated and evaluated by deriving CellNet, our proposed CORM-based network architecture. CellNet-compliant protocols' behavioral adaptation and modification were illustrated and evaluated through simulation.
CORM will have a profound impact on the operation and behavior of computer networks composing the Internet. By introducing awareness adaptability and evolvability as network intrinsic features, CORM-based Internet will proactively respond to changes in operational contexts, underlying technologies, and end user requirements. A major direction in CORM future work would be to detail the IFM component. / Ph. D.
|
24 |
Routing and Efficient Evaluation Techniques for Multi-hop Mobile Wireless NetworksLee, Young-Jun 03 August 2005 (has links)
In this dissertation, routing protocols, load-balancing protocols, and efficient evaluation techniques for multi-hop mobile wireless networks are explored.
With the advancements made in wireless communication and computer technologies, a new type of mobile wireless network, known as a mobile ad hoc network (MANET), has drawn constant attention. In recent years, several routing protocols for MANETs have been proposed. However, there still remains the need for mechanisms for better scalability support with respect to network size, traffic volume, and mobility. To address this issue, a new method for multi-hop routing in MANETs called Dynamic NIx-Vector Routing (DNVR) is proposed. DNVR has several distinct features compared to other existing on-demand routing protocols, which lead to more stable routes and better scalability.
Currently, ad hoc routing protocols lack load-balancing capabilities. Therefore they often fail to provide good service quality, especially in the presence of a large volume of network traffic since the network load concentrates on some nodes, resulting in a highly congested environment. To address this issue, a novel load-balancing technique for ad hoc on-demand routing protocols is proposed. The new method is simple but very effective in achieving load balance and congestion alleviation. In addition, it operates in a completely distributed fashion.
To evaluate and verify wireless network protocols effectively, especially to test their scalability properties, scalable and efficient network simulation methods are required. Usually simulation of such large-scale wireless networks needs a long execution time and requires a large amount of computing resources such as powerful CPUs and memory. Traditionally, to cope with this problem, parallel network simulation techniques with parallel computing capabilities have been considered. This dissertation explores a different type of method, which is efficient and can be achieved with a sequential simulation, as well as a parallel and distributed technique for large-scale mobile wireless networks.
|
25 |
Analysis and application of hop count in multi-hop wireless ad-hoc networksChen, Quanjun, Computer Science & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Hop count, i.e., the number of wireless hops a packet has to go through to reach the destination, is a fundamental metric in multi-hop wireless ad-hoc networks. Network performance, such as throughput, end-to-end delay, energy consumption, and so on, depends critically on hop count. Previous work on modeling hop count is limited in making unrealistic simplifying assumptions either at the physical or network, or both layers of the communication protocol stack. A key contribution of this thesis is to present an analytical model to derive the probability distribution of hop count under realistic assumptions at both physical and network layers. Specifically, the model considers a log-normal shadowing radio propagation capable of accommodating the random signal fading observed in most wireless communication environments, and the widely used geographic routing at the network layer. Validation of the model is achieved by a comprehensive set of simulation experiments including a trace driven simulation of a real-word vehicular ad-hoc network. The model reveals that the presence of randomness in radio propagation reduces the required number of hops to reach a given destination significantly. To demonstrate the utility of the proposed hop count model, the thesis proposes three new applications which address some of the key challenges in multi-hop wireless networks. The first application derives the per-node packet forwarding load in multi-hop wireless sensor networks and reveals that the nodes in the vicinity of the base station has a significantly less forwarding load than previously thought under simplifying radio propagation and routing assumptions. The second application demonstrates that using hop count as a measure of distance traveled by a data packet, geocasting can be achieved in multi-hop wireless networks in situations when some of the network nodes do not have access to reliable location information. Finally, the proposed hop count model is used to evaluate the performance of the third application which demonstrates that the overhead of geographic routing can be reduced significantly by embracing a position update philosophy which adapts to the mobility and communication patterns of the underlying ad-hoc network.
|
26 |
Analysis and application of hop count in multi-hop wireless ad-hoc networksChen, Quanjun, Computer Science & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Hop count, i.e., the number of wireless hops a packet has to go through to reach the destination, is a fundamental metric in multi-hop wireless ad-hoc networks. Network performance, such as throughput, end-to-end delay, energy consumption, and so on, depends critically on hop count. Previous work on modeling hop count is limited in making unrealistic simplifying assumptions either at the physical or network, or both layers of the communication protocol stack. A key contribution of this thesis is to present an analytical model to derive the probability distribution of hop count under realistic assumptions at both physical and network layers. Specifically, the model considers a log-normal shadowing radio propagation capable of accommodating the random signal fading observed in most wireless communication environments, and the widely used geographic routing at the network layer. Validation of the model is achieved by a comprehensive set of simulation experiments including a trace driven simulation of a real-word vehicular ad-hoc network. The model reveals that the presence of randomness in radio propagation reduces the required number of hops to reach a given destination significantly. To demonstrate the utility of the proposed hop count model, the thesis proposes three new applications which address some of the key challenges in multi-hop wireless networks. The first application derives the per-node packet forwarding load in multi-hop wireless sensor networks and reveals that the nodes in the vicinity of the base station has a significantly less forwarding load than previously thought under simplifying radio propagation and routing assumptions. The second application demonstrates that using hop count as a measure of distance traveled by a data packet, geocasting can be achieved in multi-hop wireless networks in situations when some of the network nodes do not have access to reliable location information. Finally, the proposed hop count model is used to evaluate the performance of the third application which demonstrates that the overhead of geographic routing can be reduced significantly by embracing a position update philosophy which adapts to the mobility and communication patterns of the underlying ad-hoc network.
|
27 |
Návrh protokolu hardwarového akcelerátoru náročných výpočtů nad více jádry / A Hardware-acceleration Protocol Design for Demanding Computations over Multiple CoresBareš, Jan January 2018 (has links)
This work deals with design of communication protocol for data transmission between control computer and computing cores implemented on FPGA chips. The purpose of the communication is speeding the performance demanding software algorithms of non-stream data processing by their hardware computation on accelerating system. The work defines a terminology used for protocol design and analyses current solutions of given issue. After that the work designs structure of the accelerating system and communication protocol. In the main part the work describes the implementation of the protocol in VHDL language and the simulation of implemented modules. At the end of the work the aplication of designed solution is presented along with possible extension of this work.
|
28 |
Design and Application of Wireless Machine-to-Machine (M2M) NetworksZheng, Lei 24 December 2014 (has links)
In the past decades, wireless Machine-to-Machine (M2M) networks have been developed in various industrial and public service areas and envisioned to improve our daily life in next decades, e.g., energy, manufacturing, transportation, healthcare, and safety. With the advantage of low cost, flexible deployment, and wide coverage as compared to wired communications, wireless communications play an essential role in providing information exchange among the distributed devices in wireless M2M networks. However, an intrinsic problem with wireless communications is that the limited radio spectrum resources may result in unsatisfactory performance in the M2M networks. With the number of M2M devices projected to reach 20 to 50 billion by 2020, there is a critical need to solve the problems related to the design and applications in the wireless M2M networks.
In this dissertation work, we study the wireless M2M networks design from three closely related aspects, the wireless M2M communication reliability, efficiency, and Demand Response (DR) control in smart grid, an important M2M application taking the advantage of reliable and efficient wireless communications. First, for the communication reliability issue, multiple factors that affect communication reliability are considered, including the shadowing and fading characteristics of wireless channels, and random network topology. A general framework has been proposed to evaluate the reliability for data exchange in both infrastructure-based single-hop networks and multi-hop mesh networks. Second, for the communication efficiency issue, we study two challenging scenarios in wireless M2M networks: one is a network with a large number of end devices, and the other is a network with long, heterogeneous, and/or varying propagation delays. Media Access Control (MAC) protocols are designed and performance analysis are conducted for both scenarios by considering their unique features. Finally, we study the DR control in smart grid. Using Lyapunov optimization as a tool, we design a novel demand response control strategy considering consumer’s comfort requirements and fluctuations in both the renewable energy supply and customers’ load demands. By considering those unique features of M2M networks in data collection and distribution, the analysis, design and optimize techniques proposed in this dissertation can enable the deployment of wireless M2M networks with a large number of end devices and be essential for future proliferation of wireless M2M networks. / Graduate / 0544 / flintlei@gmail.com
|
29 |
MAC Protocol Design for Parallel Link Rendezvous in Ad Hoc Cognitive Radio NetworksAl-Tamimi, Majid January 2010 (has links)
The most significant challenge for next wireless generation is to work opportunistically on the spectrum without a fixed spectrum allocation. Cognitive Radio (CR) is the candidate technology to utilize spectrum white space, which requires the CR to change its operating channel as the white space moves. In a CR ad-hoc network, each node could tune to a different channel; as a result, it cannot communicate with other nodes. This different tuning is due to the difficulty of maintaining Common Control Channel (CCC) in opportunistic spectrum network, and keeping the nodes synchronized in ad-hoc network. The CR ad-hoc network requires a protocol to match tuning channels between ad-hoc nodes, namely, rendezvous channels.
In this thesis, two distributed Medium Access Control (MAC) protocols are designed that provide proper rendezvous channel without CCC or synchronization. The Balanced Incomplete Block Design (BIBD) is used in both protocols to provide our protocols a method of rendezvous between CR ad-hoc nodes. In fact, the BIBD guarantees there is at least one common element between any two blocks. If the channels are assigned to the BIBD elements and the searching sequence to the BIBD block, there is a guarantee of a rendezvous at least in one channel for each searching sequence. The first protocol uses a single-BIBD sequence and a multi-channel sensing. Alternatively, the second protocol uses a multi-BIBD sequence and a single-channel sensing.
The single-sequence protocol analysis is based on the discrete Markov Chain. At the same time, the sequence structure of the BIBD in a multi-sequence protocol is used to define the Maximum Time to Rendezvous (MTTR). The simulation results confirm that the protocols outperform other existing protocols with respect to Time to Rendezvous (TTR), channel utilization, and network throughput. In addition, both protocols fairly distribute the network load on channels, and share the channels fairly among network nodes. This thesis provides straight forward and efficiently distributed MAC protocols for the CR ad-hoc networks.
|
30 |
MAC Protocol Design for Parallel Link Rendezvous in Ad Hoc Cognitive Radio NetworksAl-Tamimi, Majid January 2010 (has links)
The most significant challenge for next wireless generation is to work opportunistically on the spectrum without a fixed spectrum allocation. Cognitive Radio (CR) is the candidate technology to utilize spectrum white space, which requires the CR to change its operating channel as the white space moves. In a CR ad-hoc network, each node could tune to a different channel; as a result, it cannot communicate with other nodes. This different tuning is due to the difficulty of maintaining Common Control Channel (CCC) in opportunistic spectrum network, and keeping the nodes synchronized in ad-hoc network. The CR ad-hoc network requires a protocol to match tuning channels between ad-hoc nodes, namely, rendezvous channels.
In this thesis, two distributed Medium Access Control (MAC) protocols are designed that provide proper rendezvous channel without CCC or synchronization. The Balanced Incomplete Block Design (BIBD) is used in both protocols to provide our protocols a method of rendezvous between CR ad-hoc nodes. In fact, the BIBD guarantees there is at least one common element between any two blocks. If the channels are assigned to the BIBD elements and the searching sequence to the BIBD block, there is a guarantee of a rendezvous at least in one channel for each searching sequence. The first protocol uses a single-BIBD sequence and a multi-channel sensing. Alternatively, the second protocol uses a multi-BIBD sequence and a single-channel sensing.
The single-sequence protocol analysis is based on the discrete Markov Chain. At the same time, the sequence structure of the BIBD in a multi-sequence protocol is used to define the Maximum Time to Rendezvous (MTTR). The simulation results confirm that the protocols outperform other existing protocols with respect to Time to Rendezvous (TTR), channel utilization, and network throughput. In addition, both protocols fairly distribute the network load on channels, and share the channels fairly among network nodes. This thesis provides straight forward and efficiently distributed MAC protocols for the CR ad-hoc networks.
|
Page generated in 0.078 seconds