• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 33
  • 22
  • 9
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The synthesis and NMR study of N6', N9-octamethylenepurine cyclophane.

Hunter, Howard Neil. Bell, R. A. Unknown Date (has links)
Thesis (Ph. D.)--McMaster University (Canada), 1988. / Source: Dissertation Abstracts International, Volume: 49-11, Section: B, page: 4824. Supervisor: R.A. Bell.
2

Preparation of iodinated ribonuclease derivatives for proton nuclear magnetic resonance studies

Brauer, Manfred, January 1976 (has links)
Thesis--Wisconsin. / Includes bibliographical references (leaves 59-61).
3

A study of the influence of water on the denaturation of deoxyribose nucleic acid

Goron, David Earl. January 1965 (has links)
Call number: LD2668 .T4 1965 G66 / Master of Science
4

Cation solvation kinetics in mixed solvent systems by PMR.

January 1978 (has links)
Fung Wai-man. / Thesis (M.Phil.)--Chinese University of Hong Kong. / Includes bibliographies.
5

Glutamate Levels in the Medial Prefrontal Cortex of Healthy Women during Pregnancy and the Postpartum

McEwen, Alyssa M Unknown Date
No description available.
6

Determination of the decay parameters of resonant states /

Tsoupas, Nicholaos January 1975 (has links)
No description available.
7

Proton chemical shift prediction of A·A mismatches in B-DNA duplexes.

January 2007 (has links)
Lai, Kin Fung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 92-97). / Abstracts in English and Chinese. / Title Page --- p.i / Thesis Committee --- p.ii / Abstract (In English) --- p.iv / Abstract (In Chinese) --- p.v / Acknowledgement --- p.vi / List of Figures --- p.xii / List of Tables --- p.xiv / List of Symbols and Abbreviations --- p.xvi / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Chemical Shift Predictions of Nucleic Acids --- p.1 / Chapter 1.1.1 --- Chemical Shift --- p.1 / Chapter 1.1.2 --- Chemical Shift Prediction of Double Helical DNA and RNA --- p.1 / Chapter 1.1.3 --- Chemical Shift Prediction of Random Coil DNA --- p.2 / Chapter 1.1.4 --- Applications of Nucleic Acid Chemical Shift Prediction --- p.4 / Chapter 1.2 --- General Review of DNA Structure --- p.4 / Chapter 1.2.1 --- Structure and Nomenclature of Nucleotide --- p.4 / Chapter 1.2.2 --- Structure of Polynucleotide --- p.5 / Chapter 1.2.3 --- Sugar Conformation in Nucleotide --- p.5 / Chapter 1.2.4 --- Double Helical DNA Conformation --- p.7 / Chapter 1.3 --- A.A Mismatches in DNA Duplexes --- p.8 / Chapter 1.3.1 --- Mismatches in DNA Duplexes --- p.8 / Chapter 1.3.2 --- Biological Significance of A. A Mismatches --- p.9 / Chapter 1.4 --- Purpose of the Work --- p.9 / Chapter 2 --- Materials and Method --- p.10 / Chapter 2.1 --- Overview of the Proposed Prediction Method --- p.10 / Chapter 2.1.1 --- Nearest Neighbor Model --- p.10 / Chapter 2.1.2 --- Base Pair Replacement Approach --- p.10 / Chapter 2.2 --- Sample Design --- p.11 / Chapter 2.2.1 --- Reference Sequences for Obtaining Triplet Values and Correction Factors --- p.11 / Chapter 2.2.2 --- Sequences for Verifying the Base Pair Replacement Approach --- p.12 / Chapter 2.2.3 --- Sequences for Testing Chemical Shift Prediction Accuracy --- p.12 / Chapter 2.3 --- Sample Preparation --- p.13 / Chapter 2.4 --- NMR Experiments --- p.14 / Chapter 2.4.1 --- Non-labile Proton Resonance Assignment --- p.14 / Chapter 2.4.2 --- Labile Proton Resonance Assignment --- p.16 / Chapter 2.5 --- Validating the Assumption in Reference Hairpin Model Samples --- p.17 / Chapter 3 --- Establishment of Proton Chemical Shift Prediction method of A.A Mismatches in B-DNA Duplexes --- p.18 / Chapter 3.1 --- Resonance Assignment --- p.18 / Chapter 3.1.1 --- Non-labile Protons --- p.18 / Chapter 3.1.2 --- Labile Protons --- p.20 / Chapter 3.2 --- Validating the Assumption in Reference Hairpin Model Samples --- p.21 / Chapter 3.3 --- Extraction of A.A Mismatch Triplet Chemical Shift Values --- p.22 / Chapter 3.4 --- Calculation of the 5´ة- and 3´ة-Correction Factors --- p.24 / Chapter 3.5 --- Chemical Shift Prediction Using Triplet Values and Correction Factors Extracted from Top Strands of refA.A(XAY) and refA.T(XAY) --- p.27 / Chapter 3.6 --- Chemical Shift Prediction Using Triplet Values and Correction Factors Extracted from Bottom Strands of refA.A(XAY) and refA.T(XAY) --- p.28 / Chapter 4 --- Testing of Proton Chemical Shift Prediction of A.A Mismatches in B- DNA --- p.29 / Chapter 4.1 --- Prediction Result Using Triplet Values and Correction Factors Extracted from the Top Strands of refA.A(XAY) and refA.T(XAY) --- p.29 / Chapter 4.2 --- Prediction Result Using Triplet Values and Correction Factors Extracted from Bottom Strands of refA.A(XAY) and refAT(XAY) --- p.30 / Chapter 4.3 --- Applicability of the Base Pair Replacement Approach --- p.31 / Chapter 4.3.1 --- Chemical Shifts and 3JH1´ةH2´ة of refT.A(XTY) Sequences --- p.31 / Chapter 4.3.2 --- Correction factors Extracted from the Top Strands of refA.A(XAY) and refT.A(XTY) --- p.31 / Chapter 4.3.3 --- Prediction Result Using Correction Factors Extracted from the Top Strands of refA.A(XAY) and refT.A(XTY) --- p.33 / Chapter 5 --- Conclusion --- p.35 / Appendix I NOE Sequential Assignment of refA.T(XAY) - (A) Aromatic Protons at 25 °C; (B) Labile Protons at 25 °C --- p.36 / Appendix II NOE Sequential Assignment of refA.A(XAY) - (A) Aromatic Protons at 25 °C; (B) Labile Protons at 5 °C --- p.40 / Appendix III H1'-H2'/H2´ح region of DQF-COSY Spectra of refA.T(XAY) at 25 °C --- p.44 / Appendix IV H1'- H2'/H2´ح region of DQF-COSY Spectra of refA.A(XAY) at 25 °C --- p.46 / Appendix V H3' region of HSQC Spectra of refA T(XAY) at 25 °C --- p.48 / Appendix VI H3' region of 1H-31̐ư HSQC Spectra of refA.A(XAY) at 25 °C --- p.50 / Appendix VII 3JH1'h2'1H and 31P Chemical Shifts of refA T(XAY) --- p.52 / Appendix VIII 3JH1'H2'and 31P Chemical Shifts of refA.A(XTY) --- p.60 / Appendix IX NOE Sequential Assignment of refT .A(XTY) - (A) Aromatic Protons at 25 °C; (B) Labile Protons at 25 °C --- p.68 / Appendix X H1'-H2'/H2''region of DQF-COSY Spectra of refT.A(XTY) --- p.72 / Appendix XI H3'region of H-31P HSQC Spectra of refT.A(XTY) --- p.74 / Appendix XII 3JH1'H2'1H and 31P Chemical Shifts of refT.A(XTY) --- p.76 / Appendix XIII Chemical Shifts of Testing Sequences --- p.84 / Reference --- p.92
8

Investigation of quantitative absolute concentrations of in vivo proton magnetic resonance spectroscopy

Liang, Deng-hao 11 July 2006 (has links)
Magnetic resonance spectroscopy has been widely used in medical applications, rendering precise evaluation and diagnosis in clinics. As the development of various tools for automatic spectra analysis, providing objective quantification of metabolites, absolute concentrations has been playing an important role in clinical studies and applications as well. In this study, we investigate the reliability and accuracy of absolute concentration quantified by LCModel. Ten healthy subjects were included. We compared the resultant concentrations calculated by internal water scaling and phantom calibration, both of which are provided by LCModel. Partial volume effect was also taken into account to improve the accuracy of absolute concentrations. Automatic segmentation was applied to volume of interest in order to separate gray matter and white matter, which will facilitate the further partial volume correction and thus better accuracy of absolute quantification.
9

Partial volume correction for absolute quantification of in vivo proton MRS

Dong, Shih-Shan 20 March 2008 (has links)
Magnetic resonance spectroscopy is now in widespread use, which with various tools of spectra analysis can provide concentrations of metabolites. The influence of metabolites on human physiology is greatly. Due to the tiny variation of the concentration in various metabolites, the analytic method used in the quantitative determination of the absolute concentrations of metabolites plays an important role in this research area. In this thesis we present an analysis tool for segmentation of white matter, gray matte and cerebrospinal fluid using region growing with spatial space, and provide manual interaction for exception handling in this subject. Then we use this tool to analyze different percentages of white matter and gray matter with the default parameter by LCModel and correct partial volume effect. The results show that the proposed tool can improve significantly the accuracy in absolute quantitative analysis of concentration.
10

¹H magnetic resonance spectroscopic imaging of tumour extracellular pH : the role of carbonic anhydrase IX

Lee, Shen-Han January 2013 (has links)
No description available.

Page generated in 0.2894 seconds