• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement par procédés plasma de polymères conducteurs protoniques de type phosphonique pour piles à combustible / Development by plasma processes of phosphonic-type proton conducting polymers for fuel cells

Bassil, Joëlle 12 March 2014 (has links)
Afin de rendre les piles à combustible de type PEMFC réellement compétitives, un certain nombre d'inconvénients liés à l'utilisation du Nafion® restent à contourner, en particulier sa mauvaise conductivité protonique à des températures supérieures à 80°C. Dans l'optique de pouvoir opérer à plus hautes températures (jusqu'à 120°C), le développement de membranes moins sensibles à l'eau s'avère donc déterminant. Les polymères à base de fonctions acide phosphonique sont considérés comme des candidats potentiels pour une intégration en tant que matériau électrolyte dans les PEMFC « hautes températures » (> 80°C) grâce à leur fort caractère amphotère qui leur confère une bonne conductivité protonique dans des conditions d'humidité réduites. Dans ce contexte, la majeure partie de ce travail de thèse concerne l'élaboration par polymérisation plasma (PECVD) de polymères à base de groupements acide phosphonique à partir du monoprécurseur diméthyl allyl phosphonate. Dans un premier temps, nous avons démontré la faisabilité d'élaborer par polymérisation plasma des polymères à base de fonctions acide phosphonique à partir d'un monoprécurseur. Nous avons confirmé par IRTF, EDX et XPS la présence des groupements acide phosphonique favorables au transport protonique et l'homogénéité de la composition chimique de la surface jusqu'au cœur du matériau plasma. Les matériaux plasma montrent une bonne stabilité thermique dans la gamme de température 80°C - 120°C. Ensuite, une optimisation des conditions de synthèse a été réalisée. Les plus importantes valeurs de vitesses de croissance (28 nm.min-1 sur plaquette de silicium, 22 nm.min-1 sur PTFE et 26 nm.min-1 sur Nafion®211), de CEI (4,65 meq.g-1) et de conductivité (0,08 mS.cm-1 à 90°C et 30% RH) sont celles de la membrane synthétisée à 60 W. Des mesures de perméabilité au méthanol, à l'éthanol et au glycérol ont été réalisées et montrent que les films plasma sont intrinsèquement 40 à 235 fois moins perméables au combustible que le Nafion®211 du fait de leur fort taux de réticulation. Les polymères ont été déposés en tant que liants sur des électrodes E-TEK® pour intégration en pile. Nous avons constaté que le liant phosphonique plasma possède une conductivité protonique suffisante pour permettre le transport des protons à l'interface membrane-électrodes. En parallèle, nous avons réalisé le traitement de surface par plasma d'une membrane phosphonique conventionnelle pour en améliorer la stabilité thermique et la rétention au combustible. Les analyses thermogravimétriques montrent une légère amélioration de la stabilité thermique suite au traitement de surface. Des tests de perméabilité au méthanol et à l'éthanol montrent que la membrane traitée par plasma est 2 à 4 fois moins perméable que la membrane vierge. Le traitement à 60 W conduit aux coefficients de diffusion les plus faibles (DMeOH = 9.10-12 m2.s-1 et DEtOH = 6.10-12 m2.s-1). Des tests en pile ont été effectués montrant de meilleures performances de la membrane traitée en comparaison de son homologue non traité. / The proton exchange membrane is a key component in the PEMFC-type fuel cell; it plays a decisive role as electrolyte medium for proton transport and barrier to avoid the direct contact between fuel and oxygen. The Nafion® is one of the most extensively studied proton exchange membrane for PEMFC applications. However, it has a number of drawbacks that need to be overcome, especially the poor performance at temperature above 80°C. That's why the development of effective and low cost membranes for fuel cell turned to be a challenge for the membrane community in the last years. Phosphonic acid derivatives are considered suitable candidates as ionomers for application in PEMFC at high temperature (> 80°C) thanks to their efficient proton transport properties under low humidity condition due to their amphoteric character.In this work, plasma polymers containing phosphonic acid groups have been successfully prepared using dimethyl allylphosphonate as a single precursor demonstrating the feasibility of plasma process for the manufacture of proton exchange membranes. Moreover, plasma polymers properties have been investigated as a function of the plasma conditions. The evolution of the films growth rate on three different supports as a function of the plasma discharge power is bimodal, with a maximum (close to 30 nm min-1 on Si) at 60 W. The chemical composition of plasma materials (investigated by FTIR, EDX and XPS) is quite homogeneous from the surface to the bulk; it is characterized by a wide variety of bond arrangements, in particular the presence of phosphonate and phosphonic acid groups which are above all concentrated in the plasma film synthesized at 60 W, characterized by the highest ion exchange capacity (4.65 meq g-1) and the highest proton conductivity (0.08 mS cm-1 at 90°C and 30% RH). TGA analysis has shown that phosphonic acid-based plasma polymers retain water and don't decompose up to 150 °C, which reveals a satisfying thermal stability for the fuel cell application. In terms of fuel retention, plasma films are intrinsically highly performing (methanol, ethanol and glycerol permeabilities being 40 to 235 lower than that of Nafion®211). The plasma films were deposited on fuel cell electrodes (E-TEK®) as binding agents. We have noticed that the phosphonic binder has a sufficient proton conductivity to allow proton transport at the electrode-membrane interface.A second part of this work concerns the surface treatment by plasma process of a conventional phosphonated membrane for improvement of thermal stability and fuel retention. TGA analysis has shown a slight improvement of the thermal stability for the treated membrane. Methanol and ethanol permeabilities tests show that the plasma-modified membrane is 2 to 4 times less permeable than the non-modified membrane. The treatment at 60 W shows the lowest fuel diffusion coefficients (DMeOH = 9.10-12 m2.s-1 and DEtOH = 6.10-12 m2.s-1). Fuel cell tests were realized showing better performance for the modified membrane compared to the non-modified one.
2

Электрические свойства перовскитоподобных фаз Ba3Sc2MO8 (M= Ti, Zr), Ba1.9K0.1In2O4.9F0.1 : магистерская диссертация / Electrical properties of perovskite-type phases Ba3Sc2MO8 (M= Ti, Zr), Ba1.9K0.1In2O4.9F0.1

Корякин, К. Е., Koryakin, K. E. January 2015 (has links)
В данной работе твердофазным методом синтезированы образцы составов Ba3Sc2MO8 (где M=Ti4+, Zr4+). Растворным методом синтезирован оксифторид Ba1.9K0.1In2O4.9F0.1. Проведена рентгенофазовая аттестация образцов. Исследованы электрические свойства образцов методом электрохимического импеданса при варьировании термодинамических параметров внешней среды (Т, рО2, pH2O). Установлено влияние влажности на электропроводность образцов. Проведена дифференциация общей электропроводности на кислородно-ионный, электронный и протонный вклады. Выявлены условия доминирования протонного переноса. / In this work samples Ba3Sc2MO8 (where M=Ti4+, Zr4+) are synthesized by solid state reaction. Oxyfluoride with formula Ba1.9K0.1In2O4.9F0.1 is synthesized by solution method. Phase composition of the samples is certificated by X-ray diffraction. Electric properties of the samples are investigated by electrochemical impedance method at a variation of thermodynamic parameters of environment (T, pO2, pH2O). An influence of humidity on the conductivity of the samples is established. The total conductivity is differentiated on oxygen-ionic, electronic and protonic contributions. Conditions of domination of proton transfer are revealed.
3

De l'étude fondamentale d’hydrates d’acide fort par spectroscopie de vibration et de relaxation à l'application de leur super-conductivité protonique pour le développement d'une micropile à combustible / From the fundamental investigation of strong acid hydrates by means of vibration and relaxation spectroscopy to the application of their superprotonic conductivity for the development of a micro-fuel cell.

Desplanche, Sarah 05 October 2018 (has links)
Les piles à combustible (PAC) utilisant l’hydrogène comme vecteur, possèdent de bons rendements énergétiques et ne produisent aucun gaz à effet de serre. Elles se présentent donc aujourd’hui comme une solution propre et efficace. Cette alternative pourrait ainsi devenir un substitut possible aux hydrocarbures et pallier l’intermittence de certaines énergies renouvelables.Il existe différents types de PAC se distinguant principalement par la nature de l’électrolyte qui compose leur membrane échangeuse de protons. Utiliser les clathratehydrates d’acide fort comme électrolyte solide représente une alternative peu explorée à ce jour. Ces systèmes sont des solides cristallins nanoporeux constitués d’un réseau hôte de molécules d’eau formant des cavités nanométriques et encapsulant des molécules invitées.Dans le cas de clathrate hydrates d’acide fort, le confinement d’acides au sein des cages aqueuses génère des excès de protons délocalisés le long de leur réseau aqueux. A température ambiante, ces clathrate hydrates présentent alors une excellente conductivité protonique, plus élevée que celle des membranes de PACs actuellement utilisées. L’objectif de ce doctorat a été d’élaborer un électrolyte à base de clathrate hydrate d’acide hexafluorophosphorique (un des meilleurs conducteurs connus de cette classe de systèmes)sur la base d’une approche physico-chimique fondamentale, et de développer un montage miniaturisé de PAC intégrant ce nouvel électrolyte.A un niveau fondamental, il a été nécessaire de comprendre les facteurs régissant la conductivité protonique élevée de ces systèmes et en particulier, le lien existant entre la conductivité et le nombre d’hydratation (rapport molaire eau/acide dans le clathrate). Les mécanismes microscopiques mis en jeu ont été étudiés en s’appuyant sur la spectroscopie et l’imagerie Raman, complétées par des expériences de résonance magnétique nucléaire, de diffraction des rayons X et de spectroscopie d’impédance électrochimique. Un ensemble d’informations structurales (type de clathrate formé, transition de phase et stabilité thermodynamique), dynamiques (modes de vibration, diffusion des protons et cinétique) et chimiques (inclusion d’impuretés fluorées) a ainsi été obtenu. En tant que sonde sélective et locale, la technique de diffusion Raman a apporté des informations uniques. Elle a permis de sonder les interactions acides-cages, de proposer un protocole expérimental permettant de contrôler le nombre d’hydratation et également, de révéler pour la première fois une microstructuration du clathrate hydrate observée uniquement au-dessus d’un seuil d’hydratation. Ces propriétés physico-chimiques ont été corrélées aux mesures de conductivité, permettant de comprendre l’impact du nombre d’hydratation et des impuretés chimiques sur les performances de l’électrolyte solide. L’ensemble de ces résultats a permis d’aboutir à un développement technologique original. Une nouvelle micropile à combustible utilisant des clathrate hydrates d’acide hexafluorophosphorique comme électrolyte a été conçue. Ce développement offre ainsi une PAC aux performances comparables aux PACs actuellement disponibles et fonctionnant de la température ambiante à des températures négatives. / Fuel cells (FC) using hydrogen possess very good energy performance and produce no greenhouse gases. It presents itself today as a clean and efficient solution. This alternative could then become a possible substitute for fossil fuels and palliate for the intermittency ofcertain renewable energies.There are various types of FC, mainly distinguished by the nature of the electrolyte that composes their proton exchange membrane. Using strong acid clathrate hydrates as solid electrolyte represents an alternative for which very little is known nowadays. These systems are nanoporous crystalline solids consisting of a water host network forming nanometric cavities encapsulating guest molecules. In the case of strong acid clathrate hydrates, the confinement of acidic species within the aqueous cages generates proton excess that isdelocalized along their aqueous network. At room temperature, these clathrate hydrates have then excellent proton conductivity, which is higher than that of the FCs membranes currently used. The objective of this PhD was to develop an electrolyte based on hexafluorophosphoricacid clathrate hydrate (one of the best-known conductors of this class of system) on the basisof a fundamental physico-chemical approach, and to develop a miniaturized FC assemblyincorporating this new electrolyte.At a fundamental level, it was necessary to understand the driving factors responsible for the super-protonic conductivity of these systems and in particular, the relationship between the conductivity and the hydration number (i.e. water to acid molar ratio in the clathrate). The microscopic mechanisms have been studied by means of Raman spectroscopy and imaging, supplemented by nuclear magnetic resonance, X-ray diffraction and electrochemical impedance spectroscopy experiments. A set of results concerning the structure (clathrate type, phase transition and thermodynamic stability), the dynamics (vibrational modes, proton diffusion and kinetics) and the chemistry (inclusion of fluorinated impurities) has thus been obtained. As a selective and microscopic probe, the Raman scattering technique provided unique information. It allowed to probe the acid-cages interactions, to propose an experimental protocol monitoring the hydration number and also,to reveal, for the first time, a microstructuration of the clathrate hydrate only observed abovea hydration threshold. These physico-chemical properties have been correlated with the conductivity measurements, making it possible to understand the impact of the hydration number and of the chemical impurities onto the electrochemical performances of the solid electrolyte. All these results led to an original technological development. A new micro-fuel cell using hexafluorophosphoric acid hydrates as the electrolyte has been designed. This development offers a FC with performances comparable to the FCs currently available and operating from room temperature to negative temperatures.

Page generated in 0.0958 seconds