• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum transport studies for spintronics implementation : from supramolecular carbon nanotube systems to topological crystalline insulator / Etudes de transport quantique pour la mise en oeuvre de la spintronique : des systèmes de nanotubes de carbone supramoléculaires à l'isolant cristallin topologique

Schönle, Joachim 29 June 2018 (has links)
L'électronique moléculaire est l'un des domaines les plus intrigants de la recherche moderne. Ce domaine pourrait produire un système de construction modulaire et évolutif pour des applications spintroniques à l'échelle nanométrique. Un exemple particulièrement prometteur est celui des aimants à une seule molécule, qui se sont déjà avérés être appropriés pour des la réalisation de spin valve et de qubit de spin. L'un des plus grands défis du domaine est l'intégration de ces objets de taille nanométrique dans des circuits complexes afin de permettre la détection et la manipulation d'états de spin moléculaires. Comme l'ont montré ces dernières années le groupe NanoSpin, les nanotubes de carbone (CNTs) peuvent servir de support pour les aimants à une seule molécule, en combinant les caractéristiques des deux constituants.Une pierre angulaire de ce projet de thèse a donc été le développement d'une technique de fabrication fiable pour des dispositifs de CNTs de haute qualité, contrôlables par de multiples électrodes de grille locales afin de permettre le contrôle local des systèmes hybrides moléculaires. Un procédé basé sur la fabrication conventionnelle à un substrat a été développé à partir de zéro, pour lequel l'optimisation de la conception des échantillons, les techniques de lithographie et de dépôt ainsi que les choix de matériaux ont dû être soigneusement incorporés afin de respecter les restrictions imposées par les conditions de croissance. Nous avons d'abord réussi à produire des échantillons CNT propres, permettant de mettre en évidence une configuration à double boite quantique, tout en ajustant des caractéristiques de type p à n. Les segments créés de cette manière peuvent être contrôlés de manière stable sur toute la longueur du dispositif et devraient donc constituer une base appropriée pour l'étude de la physique moléculaire.La matière topologique non triviale constitue une plate-forme séduisante pour étudier à la fois les principes fondamentaux et les applications possibles de la spintronique au calcul quantique. Les isolants cristallins topologiques, avec tellurure d'étain (SnTe) comme exemple principal, représentent un nouvel état au sein de ce zoo des matériaux topologiques 3D. Peu de temps après les premières réalisations expérimentales, des suggestions ont été faites sur la possibilité d’un type de supraconductivité non conventionnelle hébergé à l'interface entre la matière topologique et les supraconducteurs classiques. Les implications possibles de ces systèmes comprennent l'appariement de Cooper avec une quantité de mouvement finie dans la phase FFLO ou l’ordinateur quantique topologique, basé sur des excitations particulières, appelé quasi-particule Majorana.Ce projet de thèse visait à participer à l'enquête sur les signes de supraconductivité non conventionnelle dans SnTe. Les expériences de transport sur des couches pures dans les géométries de la barre de Hall et des dispositifs hybrides supraconducteurs, réalisés à la fois comme jonctions Josephson et SQUID, sont discutés. Un couplage étonnamment fort de SnTe au supraconducteur a été trouvé et dépendances de la supraconductivité sur les géométries des échantillons, la température et le champ magnétique ont été étudiées. La relation courant-phase a été analysée dans la limite d’effets cinétiques forts. Le couplage électrostatique et l'exposition à des micro-ondes ont été explorée, mais la physique prédominante dans de telles configurations s'est avéré être de type purement conventionnel, soulignant l’importance des améliorations sur le côté matériaux.Des mesures de champ magnétique dans le plan ont donné lieu à la signature d’un φ0-SQUID avec des transitions 0-π accordables, fournissant des preuves de possibles de transitions contrôlées de la supraconductivité triviale aux régimes de couplage non conventionnels dans SnTe. / Molecular electronics is one of the most intriguing fields of modern research, which could bring forth a modular and scalable building system for nanoscale spintronics applications. A particularly promising example are single-molecule magnets, which have already successfully shown to be suitable for spin valve or spin qubit operations. One of the biggest challenges of the field is the integration of these nanometer-sized objects in complex circuits in order to allow for detection and manipulation of moleculear spin states. As shown in recent years by the NanoSpin group, carbon nanotubes (CNTs) can serve as such type of carrier for the single-molecule magnets, combining features of both constituents.A corner stone of this thesis project was hence the development of a dependable fabrication technique for high-quality CNT devices, controllable by multiple local gate electrodes in order to enable local control of molecular hybrid systems. A process based on conventional one-chip fabrication was developed from scratch, for which optimization of sample design, lithography and deposition techniques as well as material choices had to be carefully incorporated, in order to accomodate the restrictions imposed by the CNT growth conditions on the prevention of leakage currents. We succeeded in producing clean CNT devices, which could support a double dot configuration, tunable from p- to n-type characteristics. The segments created in this way can be stabily controlled over the entire device length and should hence provide a suitable backbone to study molecular physics.Topological matter constitutes an enticing platform to investigate both fundamental principles as well as possible applications from spintronics to quantum computation. Topological crystalline insulators, with tin telluride ( SnTe ) as a prime example, represent a new state of matter within this zoo of 3D topological materials. Soon after first experimental realizations, suggestions were made about the possibility of an unconventional type of superconductivity hosted at the interface between topological matter and conventional superconductors. Possible implications of such systems include Cooper pairing with finite momentum, the FFLO phase, or topological quantum computing, based on peculiar excitations, called Majorana bound states.This thesis project aimed to participate in the investigation of signs of unconventional superconductivity in SnTe . Transport experiments on bare films in Hall bar geometries and superconducting hybrid devices, realized as both Josephson junctions and SQUIDs, are discussed. A surprisingly strong coupling of SnTe to Ta superconductor was found and dependencies of superconductivity on sample geometries, temperature and magnetic field were investigated. The current-phase relation was analyzed in the limit of strong kinetic effects. Electrostatic gating and rf exposure was explored, but predominant physics in such configurations turned out to be of purely conventional type, pointing out the importance of improvements on the material side.In-plane magnetic field measurements gave rise to the manifestation of ϕ0-SQUIDs with tunable 0−π-transitions, providing evidence for possible controlled transitions from trivial superconductivity to unconventional coupling regimes in SnTe.
2

Impact of Disorder, Magnetism and Proximity-Induced Superconductivity on Conductance Fluctuations in Graphene

Kochat, Vidya January 2014 (has links) (PDF)
The experimental discovery of graphene in 2004 has opened up a new research field in the direction of atomically thin two-dimensional layered materials for exploration of many fundamental research problems and technological applications. The charge carriers in graphene are massless Dirac fermions due to which they exhibit absence of localization, thereby giving rise to huge intrinsic mobilities and ballistic transport even at room temperatures. But it was observed that the extrinsic disorder and intrinsic structural disorder can significantly influence the transport in graphene films. This thesis focuses on three different aspects of graphene -disorder, magnetism and proximity-induced superconductivity. We have reported conductance fluctuations-based transport studies to investigate these aspects as they provide more detailed information than what can be obtained from the standard transport measurements. Even though these conductivity fluctuations pose a serious bottleneck for various applications, they can also yield useful insights into the various scattering mechanisms and the symmetry properties of graphene. In the first half of the thesis, we describe the measurement of low frequency 1/f noise in large area polycrystalline graphene films to understand the role of grain boundaries in charge carrier transmission in graphene. TEM studies on the low and high angled GBs formed in these graphene samples showed that they form distinct disordered regions of varying widths depending on the tilt angle of the GBs. At low temperatures, the 1/f noise measurements indicated spontaneous breaking of time reversal symmetry across graphene grain boundaries which suggests the magnetic nature of these grain boundaries. In the second half of the thesis, we will concentrate on the universal conductance fluctuations (UCF) in graphene which is the manifestation of quantum interference phenomena at low temperatures. We find that the absolute magnitude of the UCF is directly related to various symmetry-breaking disorder present in graphene. We also discuss how the UCF can be used to study the nature of proximity-induced superconducting correlations in graphene. In the end, we have proposed new device schemes for the integration of ferromagnetic and superconducting materials with graphene.

Page generated in 0.0836 seconds