• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nevanlinnaklassen in nichtglatten streng pseudokonvexen Bereichen

Henne, Benedikt. January 1900 (has links)
Thesis (doctoral)--Rheinische Friedrich-Wilhelms-Universität Bonn, 1997. / Includes bibliographical references (p. 125-128).
2

Geometry on strongly pseudoconvex domains and CR manifolds in Cn.

January 2007 (has links)
Chao, Khek Lun Harold. / On t.p. "n" is superscript. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 67-68). / Abstracts in English and Chinese. / Chapter 1 --- Overview --- p.6 / Chapter 1.1 --- Introduction --- p.6 / Chapter 1.2 --- Domain of holomorphy --- p.7 / Chapter 1.3 --- Strongly pseudoconvex domains --- p.7 / Chapter 1.4 --- Geometry on the boundary --- p.10 / Chapter 1.5 --- Geometry in the interior --- p.12 / Chapter 1.6 --- Outline of the thesis --- p.13 / Chapter 2 --- Kahler-Einstein metric --- p.14 / Chapter 2.1 --- Problem --- p.14 / Chapter 2.2 --- Analysis of the domain --- p.15 / Chapter 2.3 --- Proof of openness --- p.23 / Chapter 2.4 --- Proof of closedness --- p.25 / Chapter 2.5 --- Uniqueness of solution --- p.33 / Chapter 2.6 --- Boundary behavior of the metric --- p.36 / Chapter 3 --- Boundary geometry of pseudo convex domains --- p.45 / Chapter 3.1 --- Background --- p.45 / Chapter 3.2 --- Monge-Ampere equation --- p.46 / Chapter 3.3 --- Differential geometry on the boundary --- p.51 / Chapter 3.4 --- Explicit calculation of the metric --- p.54 / Chapter 3.5 --- An example of spiralling chains --- p.63 / Bibliography --- p.67
3

Geometrische Untersuchungen allgemeiner und einiger spezieller Pseudokonvexer Gebiete

Müller, Manfred W., January 1975 (has links)
Thesis--Bonn. / Extra t.p. with thesis statement inserted. Includes bibliographical references (p. 66-68).
4

Geometrische Untersuchungen allgemeiner und einiger spezieller Pseudokonvexer Gebiete

Müller, Manfred W., January 1975 (has links)
Thesis--Bonn. / Extra t.p. with thesis statement inserted. Includes bibliographical references (p. 66-68).
5

Abschätzungen von Lösungen der [delta bar]-Gleichung auf streng q-konvexen Mengen mit nicht glattem Rand

Lan, Ma. January 1989 (has links)
Thesis (doctoral)--Rheinische Friedrich-Wilhelms-Universität Bonn, 1989. / Includes bibliographical references (p. 103-105).
6

Der Neumannoperator in streng pseudokonvexen Gebieten mit gewichteter Bergmanmetrik

Lampert, Christoph H. January 2003 (has links)
Thesis (doctoral)--Universität Bonn, 2003. / Includes bibliographical references (p. 163-165).
7

Higher asymptotics of the complex Monge-Ampère equation and geometry of CR-manifolds

Lee, John Marshall. January 1982 (has links)
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 1982 / Bibliography: leaves 78-79. / by John Marshall Lee. / Ph. D. / Ph. D. Massachusetts Institute of Technology, Department of Mathematics
8

CONTRIBUTIONS TO THE COMPACTNESS THEORY OF THE DEL-BAR NEUMANN OPERATOR

Celik, Mehmet 16 January 2010 (has links)
This dissertation consists of three parts. In the
9

Spectral projection for the dbar-Neumann problem

Alsaedy, Ammar, Tarkhanov, Nikolai January 2012 (has links)
We show that the spectral kernel function of the dbar-Neumann problem on a non-compact strongly pseudoconvex manifold is smooth up to the boundary.
10

CONTRIBUTIONS TO THE COMPACTNESS THEORY OF THE DEL-BAR NEUMANN OPERATOR

Celik, Mehmet 16 January 2010 (has links)
This dissertation consists of three parts. In the

Page generated in 0.0518 seconds