• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The adhesion and aggregation behaviors of Pseudomonas aeruginosa ATCC 10145.

January 1998 (has links)
by Woo Yiu Ho, Anthony. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 162-171). / Abstract also in Chinese. / Abstract --- p.i / Acknowledgements --- p.iii / Table of Contents --- p.iv / List of Figures --- p.ix / List of Tables --- p.xi / List of Abbreviations --- p.xii / Chapter 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Bacterial Adhesion and Aggregation --- p.1 / Chapter 1.1.1 --- Significance of Bacterial Adhesion Studies --- p.1 / Chapter 1.1.2 --- Definitions --- p.4 / Chapter 1.1.3 --- Colonization Process --- p.7 / Chapter 1.1.4 --- Specific and Nonspecific Interactions --- p.8 / Chapter 1.1.5 --- Models of Bacterial Adhesion and Aggregation Processes --- p.14 / Chapter 1.1.6 --- Experimental Systems in Adhesion Research --- p.16 / Chapter 1.1.7 --- Experimental Systems in Aggregation Research --- p.19 / Chapter 1.2 --- Pseudomonas aeruginosa --- p.21 / Chapter 1.2.1 --- General Description and Clinical Significance --- p.21 / Chapter 1.2.2 --- Adhesins of Pseudomonas aeruginosa --- p.22 / Chapter 1.2.3 --- "Alginate, Mucoidity, Biofilm Formation and Cystic Fibrosis" --- p.23 / Chapter 1.2.4 --- Lipopolysaccharides --- p.26 / Chapter 1.2.5 --- Pili --- p.29 / Chapter 1.2.6 --- Flagella --- p.30 / Chapter 1.2.7 --- Lectins --- p.31 / Chapter 1.2.8 --- Other Adhesins --- p.31 / Chapter 1.2.9 --- Rhamnolipids --- p.32 / Chapter 1.3 --- Current Study --- p.33 / Chapter 2 --- MATERIALS AND EQUIPMENT --- p.35 / Chapter 2.1 --- Bacterial Strain --- p.35 / Chapter 2.2 --- Solid Surfaces --- p.35 / Chapter 2.3 --- Chemicals --- p.36 / Chapter 2.4 --- Recipes --- p.38 / Chapter 2.5 --- Equipment --- p.38 / Chapter 3 --- METHODS --- p.40 / Chapter 3.1 --- Maintenance and Culturation --- p.40 / Chapter 3.1.1 --- Maintenance of Bacterial Strains --- p.40 / Chapter 3.1.2 --- Seed Culture Preparation --- p.40 / Chapter 3.1.3 --- Culturation in Defined Growth Media --- p.40 / Chapter 3.2 --- Bacterial Adhesion and Aggregation Assay Methods --- p.41 / Chapter 3.2.1 --- Bacterial Adhesion on Glass Assay --- p.41 / Chapter 3.2.2 --- Bacterial Adhesion on Plastic Assay --- p.44 / Chapter 3.2.3 --- Bacterial Adhesion under Shear Assay --- p.44 / Chapter 3.2.4 --- Bacterial Aggregation Examination by Adhesion on Glass Assay --- p.45 / Chapter 3.2.5 --- Bacterial Aggregation Examination by Top-agar Assay --- p.45 / Chapter 3.2.6 --- Bacterial Aggregation Examination by Epi-fluorescence Microscopy --- p.46 / Chapter 3.2.7 --- Bacterial Aggregation Screening Test --- p.46 / Chapter 3.3 --- Determination of the Effects of Various Factors on Adhesion and Aggregation --- p.47 / Chapter 3.3.1 --- Culturation Period --- p.47 / Chapter 3.3.2 --- Osmotic Shock during the Washing Procedure --- p.47 / Chapter 3.3.3 --- Growth Media --- p.48 / Chapter 3.3.4 --- Assay Conditions --- p.48 / Chapter 3.3.5 --- Cell Pretreatments --- p.48 / Chapter 3.4 --- Isolation of Aggregation-deficient Mutants --- p.49 / Chapter 3.5 --- Outer Membrane Protein Profiles --- p.50 / Chapter 3.5.1 --- Isolation of Outer Membrane Fraction --- p.50 / Chapter 3.5.2 --- Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis --- p.51 / Chapter 3.6 --- Determination of the Mobility of the Bacteria on Surfaces --- p.52 / Chapter 3.6.1 --- Subsurface Twitching Assay --- p.52 / Chapter 3.6.2 --- Soft-agar Swarm Assay --- p.53 / Chapter 3.7 --- Detection of Alginate Production --- p.53 / Chapter 3.7.1 --- Extraction of Alginate from Spent Growth Medium --- p.53 / Chapter 3.7.2 --- Releasing Cell Surface-associated Alginate --- p.54 / Chapter 3.8 --- Other Assay Methods --- p.55 / Chapter 3.8.1 --- Protein Assay --- p.55 / Chapter 3.8.2 --- Carbohydrate Determination --- p.55 / Chapter 3.8.3 --- Alginate Determination --- p.55 / Chapter 4 --- RESULTS --- p.57 / Chapter 4.1 --- Standardization of the Assays for Bacterial Adhesion and Aggregation --- p.57 / Chapter 4.1.1 --- Effects of Cell Density and Exposure Time on the Number of Adhered Bacteria Detected in Bacterial Adhesion on Glass Assay --- p.57 / Chapter 4.1.2 --- Characterization of Bacterial Aggregation by Different Examination Methods --- p.62 / Chapter 4.1.3 --- Effects of Culturation Period on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.67 / Chapter 4.1.4 --- Effects of Osmotic Shock during Washing on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.70 / Chapter 4.1.5 --- Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 as a Function of Time under the Standard Assay Condition --- p.71 / Chapter 4.1.6 --- Consistency of Bacterial Adhesion on Glass Assay --- p.74 / Chapter 4.2 --- Effects of Growth Media on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.77 / Chapter 4.3 --- Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 in Different Assay Media --- p.77 / Chapter 4.3.1 --- Effects of Various Buffers on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.77 / Chapter 4.3.2 --- Effects of pH on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.78 / Chapter 4.3.3 --- Effects of Various Electrolytes on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.81 / Chapter 4.3.4 --- Concentration Effects of Monovalent and Divalent Cations on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.88 / Chapter 4.3.5 --- Concentration Effects of Phosphate Buffers on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.93 / Chapter 4.3.6 --- Concentration Effects of Ammonium Sulfate and Cyclohexylammonium Sulfate on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.96 / Chapter 4.3.7 --- Effects of Cation Chelation on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.99 / Chapter 4.3.8 --- Effects of Sugars on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.100 / Chapter 4.3.9 --- Effects of Amino Acids on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.101 / Chapter 4.4 --- Adhesion and Aggregation after Pretreatments of the Cells --- p.103 / Chapter 4.4.1 --- Effects of Protease Treatments on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.103 / Chapter 4.4.2 --- Effects of Externally Added Proteins on Adhesion and Aggregation of Pronase-treated Cells --- p.107 / Chapter 4.4.3 --- Effects of Acid or Base Treatments on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.108 / Chapter 4.4.4 --- Effects of Heat Treatment on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.108 / Chapter 4.4.5 --- Effects of Extensive Washing on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.110 / Chapter 4.5 --- Isolation and Growth Characteristics of Aggregation-deficient Mutants --- p.111 / Chapter 4.6 --- Comparisons of the Adhesion and Aggregation Characters of Pseudomonas aeruginosa ATCC 10145 and Mutant 9 --- p.115 / Chapter 4.6.1 --- Under Standard Condition --- p.115 / Chapter 4.6.2 --- On Different Surfaces and in Different Electrolytes --- p.115 / Chapter 4.6.3 --- Under Shear --- p.118 / Chapter 4.6.4 --- Adhesion and Aggregation of Combined Suspensions of Pseudomonas aeruginosa ATCC 10145 and Mutant 9 --- p.122 / Chapter 4.7 --- Characterization of the Cell Surface Properties of Pseudomonas aeruginosa ATCC 10145 and Mutant 9 --- p.125 / Chapter 4.7.1 --- Outer Membrane Protein Profiles --- p.125 / Chapter 4.7.2 --- Pili-elicited Twitching Mobility --- p.125 / Chapter 4.7.3 --- Mobility Due to Flagella --- p.128 / Chapter 4.7.4 --- Production of Alginate --- p.128 / Chapter 5 --- DISCUSSIONS --- p.130 / Chapter 5.1 --- Choice of the Materials --- p.130 / Chapter 5.2 --- Development of the Assay Methods --- p.130 / Chapter 5.2.1 --- Development of the Procedures for Bacterial Adhesion Assays --- p.130 / Chapter 5.2.2 --- Development of the Assay Methods for Bacterial Aggregation --- p.132 / Chapter 5.2.3 --- Standardization of the Assays --- p.133 / Chapter 5.2.4 --- Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 as a Function of Time under the Standard Assay Condition --- p.134 / Chapter 5.2.5 --- Consistency of Bacterial Adhesion on Glass Assay --- p.135 / Chapter 5.2.6 --- Limits of Bacterial Adhesion on Glass Assay --- p.135 / Chapter 5.3 --- Effects of Growth Media on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.135 / Chapter 5.4 --- Effects of Various Chemicals in the Assay Media on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.136 / Chapter 5.4.1 --- Effects of Electrolytes on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.137 / Chapter 5.4.2 --- Effects of Aggregation on Adhesion --- p.140 / Chapter 5.4.3 --- Effects of Cyclohexylammonium Sulfate and Ammonium Sulfate on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.141 / Chapter 5.4.4 --- Effects of Sugars and Amino Acids on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.143 / Chapter 5.5 --- Effects of Various Cell-surface Modifications on Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 --- p.144 / Chapter 5.6 --- Isolation and Growth Characteristics of Aggregation-deficient Mutants --- p.146 / Chapter 5.7 --- Comparisons of the Adhesion and Aggregation Characters of Pseudonomas aeruginosa ATCC 10145 and Mutant 9 --- p.147 / Chapter 5.7.1 --- Adhesion and Aggregation of Pseudonomas aeruginosa ATCC 10145 and Mutant 9 on Different Surfaces In Different Electrolytes --- p.147 / Chapter 5.7.2 --- Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 and Mutant 9 Under Shear --- p.147 / Chapter 5.7.3 --- Adhesion and Aggregation of Combined Suspensions of Pseudomonas aeruginosa ATCC 10145 and Mutant 9 --- p.148 / Chapter 5.8 --- Characterization of the Cell Surface Properties of Pseudomonas aeruginosa ATCC 10145 and Mutant 9 --- p.148 / Chapter 5.9 --- General Discussions --- p.151 / Chapter 6 --- APPENDIX --- p.154 / Chapter 6.1 --- Visual Examination of Adhesion and Aggregation of Pseudomonas aeruginosa ATCC 10145 on Glass --- p.154 / Chapter 6.2 --- Fractal Analysis of Bacterial Aggregates --- p.154 / Chapter 7 --- REFERENCES --- p.162
2

Physiological changes and responses of pseudomonas aeruginosa ATCC 9027 when grown on petroleum compounds

Pietrantonio, Frank A. January 1997 (has links)
Physiological and compositional changes in Pseudomonas aeruginosa (ATCC 9027) were monitored during, growth on various petroleum compounds in a chemically-defined medium. Growth of P. aeruginosa was observed when furnace oil, kerosene, aviation fuel, light crude oil and hexadecane were used as carbon and energy sources. A variable and extended lag period before active growth was achieved was characteristic of petroleum-grown cells as compared to glucose-grown cells. Growth on the petroleum hydrocarbons, compared with that on glucose, resulted in changes in cell lipid composition, outer membrane proteins, cell-surface hydrophobicity, surface-tension, and pH changes in the growth medium during transition from early to late-log phase. Cell composition and physiology of cells grown in the petroleum mixtures varied due to differences in the chemical composition of the material. Production of an exopolymer (characterized as a peptidoglycolipid) was associated with petroleum-grown cells but not with glucose-grown cells. The above differences illustrate some of the dynamic and physiological and biochemical changes the microorganism undergoes to access its hydrophobic carbon and energy source.
3

Physiological changes and responses of pseudomonas aeruginosa ATCC 9027 when grown on petroleum compounds

Pietrantonio, Frank A. January 1997 (has links)
No description available.

Page generated in 0.0794 seconds