• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of <em>Erwinia tracheiphila</em> in <em>Cucumis melo</em>

Caudle, John R 01 January 2013 (has links)
Currently there is no control of bacterial wilt disease, Erwinia tracheiphila, in susceptible cucurbit crops, once infection of the plant occurs. Conventional and organic production systems rely on insecticide applications to kill the vectors, striped and spotted cucumber beetles, Acalymma vittatum and Diabrotica undecimpunctata, respectively, prior to transmission of the pathogen which indirectly controls the disease to some extent. Physical barriers such as row covers are used to exclude the vectors from plants prior to flowering; however, pollination requirements expose plants to potential infection. Experimental field plots were developed to test various enhanced organic production systems in an effort to increase productivity of the "Athena" variety cantaloupe melon crop, Cucumis melo, which is highly susceptible to bacterial wilt infection. The rotations included enhanced duration row cover applications as well as season long covering of the crop and application of bumble bee hives for pollination. The most successful enhanced production method included the removal of row covers and application of organic pesticides during flowering and recovering the crop until the end of the season. In this scenario, reduction in the cost of pesticide application and reduced risk due to less exposure to infection are the key enhancements to the system. During pollination, the melon plants are at risk of infection from bacterial wilt because organic production methods cannot include systemic insecticides. Only shorter residual contact insecticides are available, thus exposing the melon plants to vectors after the contact insecticide becomes ineffective. Application of an off-label biocontrol bacterium, Pseudomonas fluorescens A506, found in the organically certified product BlightBan®A506, was found to significantly increase control of Erwinia tracheiphila infection in plants, thereby allowing for increased productivity. Additionally, development of a Real-Time Polymerase Chain Reaction, RT-PCR, primer set and probe improve the detection of Erwinia tracheiphila in melon plants. This new primer set was tested against numerous related and associated pathogens to document the specificity of this particular screening test.

Page generated in 0.0762 seconds