• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Space-Time Block Coded OFDM Systems with Pseudo Random Cyclic Postfix

Li, You-De 04 August 2008 (has links)
Orthogonal frequency division multiplexing (OFDM) due to the robustness to the effect of multipath fading and having high spectral efficiency, it has become a good candidate of wireless communications systems. The block transmission of signal-blocks through the channel will suffer from the inter-block interference (IBI) and inter-symbol interference (ISI). Usually in the transmitter of the OFDM systems, redundancy (or guard interval), such cyclic prefix (CP) or zero padding (ZP), with sufficient length, is inserted in the transmitted block to avoid the IBI. In this thesis, we propose a novel pseudo random cyclic postfix (PRCP-) OFDM system configuration, which adopts the PRCP as redundancy and combines with multiple antennas. In fact, the multiple transmit antenna and multiple receive antenna, which exploits the spatial diversity, can be used to further enhance the channel capacity and achieve high data-rate. The main property of PRCP-OFDM modulation is that it exploits the cyclic-postfix sequences to estimate channel information with a low complexity method. Compared with CP-OFDM, it overcomes the channel null problem. For ZP-OFDM, it uses the additional information to estimate channel which is replaced by zero samples in ZP-OFDM. Moreover, PRCP-OFDM avoids the interference of signals to the desired postfix when we estimate channel impulse response (CIR) and which is different from pseudo random postfix (PRP-) OFDM [8]. Thus, as SNR grows, PRCP-OFDM can have better performance than PRP-OFDM. With the help of [9], [12] and [13], we extend the PRCP-OFDM to the MIMO case with space-time block coding. Via computer simulation, we verify that the performance is improved, in terms of the accuracy of channel estimation and symbol error rate (SER).
2

The Space-Time Block Coded in Pseudo Random Cyclic Postfix OFDM Systems with Blind Channel Shortening Algorithm

Chang, Chun-Yi 18 August 2009 (has links)
The Orthogonal frequency division multiplexing (OFDM) modulator with redundancy has been adopted in many wireless communication systems for higher data rate transmissions .The block transmission of signal-blocks through the channel will suffer from the inter-block interference (IBI) and inter-symbol interference (ISI). In the traditional transmitter of the OFDM systems, redundancy (or guard interval), such cyclic prefix (CP) or zero padding (ZP), with sufficient length, is inserted in the transmitted block to avoid the IBI. In this thesis, we propose a novel pseudo random cyclic postfix (PRCP-) OFDM system configuration and joint a blind channel shortening algorithm which named MERRY algorithm [18], which adopts the PRCP as redundancy and combines with multiple antennas. In fact, the multiple input and multiple output (MIMO) system, which exploits the spatial diversity, it can be used to further enhance the channel capacity and achieve high data-rate, and we extend the PRCP-OFDM to the MIMO case with space-time block coding. In redundancy insufficient case, the blind channel shortening algorithm be adopted for suppressing the IBI. The main property of PRCP-OFDM modulation is that it exploits the cyclic-postfix sequences to estimate channel information with a low complexity method. For CP-OFDM, it overcomes the channel null problem. Compared with ZP-OFDM, it uses the additional information to estimate channel which is replaced by zero samples in ZP-OFDM. Moreover, PRCP-OFDM avoids the interference of signals to the desired postfix when we estimate channel impulse response (CIR) and which is different from pseudo random postfix (PRP-) OFDM [8]. Thus, when SNR grows, PRCP-OFDM can have better performance than PRP-OFDM. With the help of [9], [12] and [13]. Via computer simulation, we verify that the performance is improved.
3

Kalman Equalization For Modified PRP-OFDM System With Assistant Training Sequences Under Time-Varying Channels

Lee, Chung-hui 07 August 2008 (has links)
Orthogonal Frequency Division Multiplexing (OFDM) techniques have been used in many wireless communication systems to improve the system capacity and achieve high data-rate. It possesses good spectral efficiency and robustness against interferences. The OFDM system has been adopted in many communication standards, such as the 802.11a/g standards for the high-speed WLAN, HIPERLAN2, and IEEE 802.16 standard, and meanwhile, it is also employed in the European DAB and DVB systems. To avoid the inter-block interference (IBI), usually, in the transmitter of OFDM systems the redundancy with sufficient length is introduced, it allows us to overcome the IBI problem, due to highly dispersive channel. Many redundancy insertion methods have been proposed in the literatures, there are cyclic prefix (CP), zero padding (ZP) and the pseudorandom postfix (PRP). Under such system we have still to know the correct channel state information for equalizing the noisy block signal. Especially, in time-varying channel, the incorrect channel state information may introduce serious inter-symbol interference (ISI), if the channel estimation could not perform correctly. In this thesis, the PRP-OFDM system is considered. According to the PRP-OFDM scheme, the redundancy with pseudorandom postfix (PRP) approach is employed to make semi-blind channel estimation with order-one statistics of the received signal. But these statistic characteristics may not be available under time-varying channel. Hence, in this thesis, we propose a modified PRP-OFDM system with assistant training sequences, which is equipped with minimum mean-square-error equalizer and utilize Kalman filter algorithm to implement time-varying channel estimation. To do so, we first model time-varying channel estimation problem with a dynamic system, and adopt the Kalman filter algorithm to estimate the true channel coefficients. Unfortunately, since most parameters in dynamic system are random and could not to be known in advance. We need to apply effective estimation schemes to estimate the statistics of true parameters for implementing the Kalman filter algorithm. When the channel state information is known, MMSE equalizer follows to suppress the inter-symbol interference (ISI). Moreover, after making decision the binary data can be used to re-modulate PRP-OFDM symbol and to be re-used in Kalman filter to obtain more accurate CSI to improve the effectiveness of the equalizer. Via computer simulations, we verify that desired performance in terms of bit error rate (BER), can be achieved compared with the CP-OFDM systems.
4

Block-based Bayesian Decision Feedback Equalization for ZP-OFDM Systems with Semi-Blind Channel Estimation

Bai, Yun-kai 25 August 2007 (has links)
Orthogonal frequency division multiplexing (OFDM) modulator with redundancy has been adopted in many wireless communication systems for higher data rate transmissions. The introduced redundancy at the transmitter allows us to overcome serious inter-block interference (IBI) problems due to highly dispersive channel. However, the selection of redundancy length will affect the system performance and spectral efficiency, and is highly dependent on the length of channel impulse response. In this thesis, based on the pseudorandom postfix (PRP) OFDM scheme we propose a novel block-based OFDM transceiver framework. Since in the PRP-OFDM system the PRP can be employed for semi-blind channel estimation with order-one statistics of the received signal. Hence, for sufficient redundancy case the PRP-OFDM system with the Bayesian decision feedback equalizer (DFE) is adopted for suppressing the IBI and ISI simultaneously. However, for the insufficient redundancy case (the length of redundancy is less than the order of channel), we first propose a modified scheme for channel estimation. To further reduce the complexity of receiver, the maximum shortening signal-to-noise-ratio time domain equalizer (MSSNR TEQ) with the Bayesian DFE is developed for suppressing the IBI and ISI, separately. That is, after knowing the channel state information (CSI) and removing the effect of IBI with MSSNR TEQ, the Bayesian DFE is applied for eliminating the ISI. Via computer simulation, we verify that performance improvement, in terms of bit error rate (BER), compared with the conventional block-based minimum mean square error (MMSE)-DFE can be achieved.

Page generated in 0.0576 seconds