• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Minimal Crystallizations of 3- and 4- Manifolds

Basak, Biplab January 2015 (has links) (PDF)
A simplicial cell complex K is the face poset of a regular CW complex W such that the boundary complex of each cell is isomorphic to the boundary complex of a simplex of same dimension. If a topological space X is homeomorphic to W then we say that K is a pseudotriangulation of X. For d 1, a (d + 1)-colored graph is a graph = (V; E) with a proper edge coloring : E ! f0; : : : ; dg. Such a graph is called contracted if (V; E n 1(i)) is connected for each color A contracted graph = (V; E) with an edge coloring : E ! f0; : : : ; dg determines a d-dimensional simplicial cell complex K( ) whose vertices have one to one correspondence with the colors 0; : : : ; d and the facets (d-cells) have one to one correspondence with the vertices in V . If K( ) is a pseudotriangulation of a manifold M then ( ; ) is called a crystallization of M. In [71], Pezzana proved that every connected closed PL manifold admits a crystallization. This thesis addresses many important results of crystallization theory in combinatorial topology. The main contributions in this thesis are the followings. We have introduced the weight of a group which has a presentation with number of relations is at most the number of generators. We have shown that the number of vertices of any crystallization of a connected closed 3-manifold M is at least the weight of the fundamental group of M. This lower bound is sharp for the 3-manifolds RP3, L(3; 1), L(5; 2), S1 S1 S1, S2 S1, S2 S1 and S3=Q8, where Q8 is the quaternion group. Moreover, there is a unique such vertex minimal crystallization in each of these seven cases. We have also constructed crystallizations of L(kq 1; q) with 4(q + k 1) vertices for q 3, k 2 and L(kq +1; q) with 4(q + k) vertices for q 4, k 1. In [22], Casali and Cristofori found similar crystallizations of lens spaces. By a recent result of Swartz [76], our crystallizations of L(kq + 1; q) are vertex minimal when kq + 1 are even. In [47], Gagliardi found presentations of the fundamental group of a manifold M in terms of a crystallization of M. Our construction is the converse of this, namely, given a presentation of the fundamental group of a 3-manifold M, we have constructed a crystallization of M. These results are in Chapter 3. We have de ned the weight of the pair (hS j Ri; R) for a given presentation hS j R of a group, where the number of generators is equal to the number of relations. We present an algorithm to construct crystallizations of 3-manifolds whose fundamental group has a presentation with two generators and two relations. If the weight of (hS j Ri; R) is n then our algorithm constructs all the n-vertex crystallizations which yield (hS j Ri; R). As an application, we have constructed some new crystallization of 3-manifolds. We have generalized our algorithm for presentations with three generators and a certain class of relations. For m 3 and m n k 2, our generalized algorithm gives a 2(2m + 2n + 2k 6 + n2 + k2)-vertex crystallization of the closed connected orientable 3-manifold Mhm; n; ki having fundamental group hx1; x2; x3 j xm1 = xn2 = xk3 = x1x2x3i. These crystallizations are minimal and unique with respect to the given presentations. If `n = 2' or `k 3 and m 4' then our crystallization of Mhm; n; ki is vertex-minimal for all the known cases. These results are in Chapter 4. We have constructed a minimal crystallization of the standard PL K3 surface. The corresponding simplicial cell complex has face vector (5; 10; 230; 335; 134). In combination with known results, this yields minimal crystallizations of all simply connected PL 4-manifolds of \standard" type, i.e., all connected sums of CP2, CP2, S2 S2, and the K3 surface. In particular, we obtain minimal crystallizations of a pair 4-manifolds which are homeomorphic but not PL-homeomorphic. We have also presented an elementary proof of the uniqueness of the 8-vertex crystallization of CP2. These results are in Chapter 5. For any crystallization ( ; ) the number f1(K( )) of 1-simplices in K( ) is at least d+1 . It is easy to see that f1(K( )) = d+1 if and only if (V; 1(A)) is connected for each d 2 2 1)-set A called simple. All the crystallization in Chapter 5 (. Such a crystallization is are simple. Let ( ; ) be a crystallization of M, where = (V; E) and : E ! f0; : : : ; dg. We say that ( ; ) is semi-simple if (V; 1(A)) has m + 1 connected components for each (d 1)-set A, where m is the rank of the fundamental group of M. Let ( ; ) be a connected (d +1)-regular (d +1)-colored graph, where = (V; E) and : E ! f0; : : : ; dg. An embedding i : ,! S of into a closed surface S is called regular if there exists a cyclic permutation ("0; "1; : : : ; "d) (of the color set) such that the boundary of each face of i( ) is a bi-color cycle with colors "j; "j+1 for some j (addition is modulo d+1). Then the regular genus of ( ; ) is the least genus (resp., half of genus) of the orientable (resp., non-orientable) surface into which embeds regularly. The regular genus of a closed connected PL 4-manifold M is the minimum regular genus of its crystallizations. For a closed connected PL 4-manifold M, we have provided the following: (i) a lower bound for the regular genus of M and (ii) a lower bound of the number of vertices of any crystallization of M. We have proved that all PL 4-manifolds admitting semi-simple crystallizations, attain our bounds. We have also characterized the class of PL 4-manifolds which admit semi-simple crystallizations. These results are in Chapter 6.

Page generated in 0.0786 seconds