Spelling suggestions: "subject:"so2"" "subject:"pso2""
1 |
Estudos de complementação fenotípica do mutante pso2-1 de Saccharomyces cerevisiae pelos genes uvr de Escherichia coliLenzi, Cassius Frosi January 2005 (has links)
O mecanismo de reparação de DNA por excisão de nucleotídeos (NER) é o mais universal e conservado sistema de reparação encontrado em organismos procarióticos e eucarióticos. Em bactérias, a via NER é mediada pelos produtos dos genes uvrA, uvrB e uvrC, conhecido como complexo UvrABC. A atuação das proteínas Uvr pode ser dividida em quatro passos básicos: reconhecimento do dano e verificação da lesão; incisão; excisão do fragmento danificado; síntese de reparo e ligação. O mutante pso2-1 de Saccharomyces cerevisiae foi um dos primeiros mutantes isolados sensíveis especificamente aos tratamentos com agentes indutores de pontes intercadeias (ICLs), tais como 8-MOP+UVA e mustarda nitrogenada (HN2). O exato mecanismo de participação da proteína Pso2p no reparo de ICLs ainda permanece desconhecido e, portanto, a continuidade da sua caracterização é essencial para compreender melhor os mecanismos e produtos gênicos envolvidos na reparação de ICLs em S. cerevisiae. Além disso, alguns estudos recentes com os mutantes de Escherichia coli uvrA, uvrB e uvrC mostraram uma hipersensibilidade do mutante uvrB à 8-MOP + UVA, bem como a incapacidade de reconstituir DNA de alta massa molecular, característica esta semelhante ao fenótipo do mutante pso2-1 de S. cerevisiae. Neste trabalho, é apresentada a subclonagem e a expressão dos genes uvrB e uvrC de E. coli no mutante pso2-1 de Saccharomyces cerevisiae, com o objetivo de testar os fenótipos de sensibilidade e mutagênese deste mutante frente a alguns agentes genotóxicos. Os genes uvrB e uvrC foram amplificados por PCR a partir do DNA genômico de uma linhagem selvagem de E. coli, subclonados no vetor de expressão de levedura pVT103-U, sendo a transformação realizada por meio de choque térmico nas linhagens pso2-1 e selvagem de S. cerevisiae. A análise de complementação fenotípica e mutagênica foi realizada frente aos psoralenos fotoativados (8-MOP+UVA e 3-CPs+UVA) e radiação UVC. A análise da expressão dos genes uvrB e uvrC foi desenvolvida com o emprego da técnica de RT-PCR. Os dados mostram que, apesar da presença dos transcritos uvrB e uvrC no mutante pso2-1 de S. cerevisiae, não houve restauração dos fenótipos de resistência e mutagênese para ICLs, um possível indicativo de ausência de similaridade funcional entre as proteínas UvrB, UvrC e Pso2p. / Nucleotide excision repair (NER) is a universal and highly conserved DNA repair pathway found in prokaryotes and eukaryotes. In bacteria, NER is mediated by uvrA, uvrB and uvrC gene products, composing the UvrABC protein complex. The role of Uvr proteins can be divided in four basic steps: damage recognition, dual incision, repair synthesis and ligation. The mutant pso2-1 was primarily isolated by its specific sensitivity to agents that produce interstrand cross-links (ICLs), like 8-MOP + UVA and nitrogen mustard (HN2). The exact mechanism of how Pso2p participate in the ICL repair is unclear, and its characterization is essential to understand the mechanisms and the gene products related to ICL repair. Some recent studies with uvrA, uvrB and uvrC E. coli strains indicated that the uvrB strain is hypersensitive to 8-MOP + UVA and it is incapable to restore the high molecular weight DNA, like the pso2-1 yeast mutant. In this work we have arried out the subcloning and expression of E. coli uvrB and uvrC genes in the S. cerevisiae pso2-1 mutant with the purpose to test the sensitivity and mutagenesis of transformed yeast strains after treatment with genotoxic agents. The uvrB and uvrC genes were amplified by PCR from an E. coli wild-type (WT) strain, subcloned into the yeast expression vector pVT103-U and transformed in the WT and pso2-1 yeast strains by heat shock. The analysis of phenotypic complementation was performed with photoactivated psoralens (8-MOP+UVA and 3-CPs+UVA) and UVC. The expression analysis of uvrB and uvrC was carried out the RT-PCR technique. The results show that the E. coli uvrB and uvrC genes cannot complement the yeast pso2-1 mutant, despite the presence of uvrB and uvrC transcripts. These results indicate that the proteins UvrB, UvrC and Pso2p probably do not share a functional similarity.
|
2 |
Estudos de complementação fenotípica do mutante pso2-1 de Saccharomyces cerevisiae pelos genes uvr de Escherichia coliLenzi, Cassius Frosi January 2005 (has links)
O mecanismo de reparação de DNA por excisão de nucleotídeos (NER) é o mais universal e conservado sistema de reparação encontrado em organismos procarióticos e eucarióticos. Em bactérias, a via NER é mediada pelos produtos dos genes uvrA, uvrB e uvrC, conhecido como complexo UvrABC. A atuação das proteínas Uvr pode ser dividida em quatro passos básicos: reconhecimento do dano e verificação da lesão; incisão; excisão do fragmento danificado; síntese de reparo e ligação. O mutante pso2-1 de Saccharomyces cerevisiae foi um dos primeiros mutantes isolados sensíveis especificamente aos tratamentos com agentes indutores de pontes intercadeias (ICLs), tais como 8-MOP+UVA e mustarda nitrogenada (HN2). O exato mecanismo de participação da proteína Pso2p no reparo de ICLs ainda permanece desconhecido e, portanto, a continuidade da sua caracterização é essencial para compreender melhor os mecanismos e produtos gênicos envolvidos na reparação de ICLs em S. cerevisiae. Além disso, alguns estudos recentes com os mutantes de Escherichia coli uvrA, uvrB e uvrC mostraram uma hipersensibilidade do mutante uvrB à 8-MOP + UVA, bem como a incapacidade de reconstituir DNA de alta massa molecular, característica esta semelhante ao fenótipo do mutante pso2-1 de S. cerevisiae. Neste trabalho, é apresentada a subclonagem e a expressão dos genes uvrB e uvrC de E. coli no mutante pso2-1 de Saccharomyces cerevisiae, com o objetivo de testar os fenótipos de sensibilidade e mutagênese deste mutante frente a alguns agentes genotóxicos. Os genes uvrB e uvrC foram amplificados por PCR a partir do DNA genômico de uma linhagem selvagem de E. coli, subclonados no vetor de expressão de levedura pVT103-U, sendo a transformação realizada por meio de choque térmico nas linhagens pso2-1 e selvagem de S. cerevisiae. A análise de complementação fenotípica e mutagênica foi realizada frente aos psoralenos fotoativados (8-MOP+UVA e 3-CPs+UVA) e radiação UVC. A análise da expressão dos genes uvrB e uvrC foi desenvolvida com o emprego da técnica de RT-PCR. Os dados mostram que, apesar da presença dos transcritos uvrB e uvrC no mutante pso2-1 de S. cerevisiae, não houve restauração dos fenótipos de resistência e mutagênese para ICLs, um possível indicativo de ausência de similaridade funcional entre as proteínas UvrB, UvrC e Pso2p. / Nucleotide excision repair (NER) is a universal and highly conserved DNA repair pathway found in prokaryotes and eukaryotes. In bacteria, NER is mediated by uvrA, uvrB and uvrC gene products, composing the UvrABC protein complex. The role of Uvr proteins can be divided in four basic steps: damage recognition, dual incision, repair synthesis and ligation. The mutant pso2-1 was primarily isolated by its specific sensitivity to agents that produce interstrand cross-links (ICLs), like 8-MOP + UVA and nitrogen mustard (HN2). The exact mechanism of how Pso2p participate in the ICL repair is unclear, and its characterization is essential to understand the mechanisms and the gene products related to ICL repair. Some recent studies with uvrA, uvrB and uvrC E. coli strains indicated that the uvrB strain is hypersensitive to 8-MOP + UVA and it is incapable to restore the high molecular weight DNA, like the pso2-1 yeast mutant. In this work we have arried out the subcloning and expression of E. coli uvrB and uvrC genes in the S. cerevisiae pso2-1 mutant with the purpose to test the sensitivity and mutagenesis of transformed yeast strains after treatment with genotoxic agents. The uvrB and uvrC genes were amplified by PCR from an E. coli wild-type (WT) strain, subcloned into the yeast expression vector pVT103-U and transformed in the WT and pso2-1 yeast strains by heat shock. The analysis of phenotypic complementation was performed with photoactivated psoralens (8-MOP+UVA and 3-CPs+UVA) and UVC. The expression analysis of uvrB and uvrC was carried out the RT-PCR technique. The results show that the E. coli uvrB and uvrC genes cannot complement the yeast pso2-1 mutant, despite the presence of uvrB and uvrC transcripts. These results indicate that the proteins UvrB, UvrC and Pso2p probably do not share a functional similarity.
|
3 |
Estudos de complementação fenotípica do mutante pso2-1 de Saccharomyces cerevisiae pelos genes uvr de Escherichia coliLenzi, Cassius Frosi January 2005 (has links)
O mecanismo de reparação de DNA por excisão de nucleotídeos (NER) é o mais universal e conservado sistema de reparação encontrado em organismos procarióticos e eucarióticos. Em bactérias, a via NER é mediada pelos produtos dos genes uvrA, uvrB e uvrC, conhecido como complexo UvrABC. A atuação das proteínas Uvr pode ser dividida em quatro passos básicos: reconhecimento do dano e verificação da lesão; incisão; excisão do fragmento danificado; síntese de reparo e ligação. O mutante pso2-1 de Saccharomyces cerevisiae foi um dos primeiros mutantes isolados sensíveis especificamente aos tratamentos com agentes indutores de pontes intercadeias (ICLs), tais como 8-MOP+UVA e mustarda nitrogenada (HN2). O exato mecanismo de participação da proteína Pso2p no reparo de ICLs ainda permanece desconhecido e, portanto, a continuidade da sua caracterização é essencial para compreender melhor os mecanismos e produtos gênicos envolvidos na reparação de ICLs em S. cerevisiae. Além disso, alguns estudos recentes com os mutantes de Escherichia coli uvrA, uvrB e uvrC mostraram uma hipersensibilidade do mutante uvrB à 8-MOP + UVA, bem como a incapacidade de reconstituir DNA de alta massa molecular, característica esta semelhante ao fenótipo do mutante pso2-1 de S. cerevisiae. Neste trabalho, é apresentada a subclonagem e a expressão dos genes uvrB e uvrC de E. coli no mutante pso2-1 de Saccharomyces cerevisiae, com o objetivo de testar os fenótipos de sensibilidade e mutagênese deste mutante frente a alguns agentes genotóxicos. Os genes uvrB e uvrC foram amplificados por PCR a partir do DNA genômico de uma linhagem selvagem de E. coli, subclonados no vetor de expressão de levedura pVT103-U, sendo a transformação realizada por meio de choque térmico nas linhagens pso2-1 e selvagem de S. cerevisiae. A análise de complementação fenotípica e mutagênica foi realizada frente aos psoralenos fotoativados (8-MOP+UVA e 3-CPs+UVA) e radiação UVC. A análise da expressão dos genes uvrB e uvrC foi desenvolvida com o emprego da técnica de RT-PCR. Os dados mostram que, apesar da presença dos transcritos uvrB e uvrC no mutante pso2-1 de S. cerevisiae, não houve restauração dos fenótipos de resistência e mutagênese para ICLs, um possível indicativo de ausência de similaridade funcional entre as proteínas UvrB, UvrC e Pso2p. / Nucleotide excision repair (NER) is a universal and highly conserved DNA repair pathway found in prokaryotes and eukaryotes. In bacteria, NER is mediated by uvrA, uvrB and uvrC gene products, composing the UvrABC protein complex. The role of Uvr proteins can be divided in four basic steps: damage recognition, dual incision, repair synthesis and ligation. The mutant pso2-1 was primarily isolated by its specific sensitivity to agents that produce interstrand cross-links (ICLs), like 8-MOP + UVA and nitrogen mustard (HN2). The exact mechanism of how Pso2p participate in the ICL repair is unclear, and its characterization is essential to understand the mechanisms and the gene products related to ICL repair. Some recent studies with uvrA, uvrB and uvrC E. coli strains indicated that the uvrB strain is hypersensitive to 8-MOP + UVA and it is incapable to restore the high molecular weight DNA, like the pso2-1 yeast mutant. In this work we have arried out the subcloning and expression of E. coli uvrB and uvrC genes in the S. cerevisiae pso2-1 mutant with the purpose to test the sensitivity and mutagenesis of transformed yeast strains after treatment with genotoxic agents. The uvrB and uvrC genes were amplified by PCR from an E. coli wild-type (WT) strain, subcloned into the yeast expression vector pVT103-U and transformed in the WT and pso2-1 yeast strains by heat shock. The analysis of phenotypic complementation was performed with photoactivated psoralens (8-MOP+UVA and 3-CPs+UVA) and UVC. The expression analysis of uvrB and uvrC was carried out the RT-PCR technique. The results show that the E. coli uvrB and uvrC genes cannot complement the yeast pso2-1 mutant, despite the presence of uvrB and uvrC transcripts. These results indicate that the proteins UvrB, UvrC and Pso2p probably do not share a functional similarity.
|
4 |
Functional analysis of Pso2 reveals a novel DNA hairpin endonuclease activity: Implications for interstrand crosslink repairTiefenbach, Tracy E. 10 1900 (has links)
<p>DNA interstrand crosslinks provide a challenge for repair machinery given that both strands contain the lesion. Cells have evolved a sophisticated mechanism to overcome this, by recruiting proteins from several repair pathways. One protein thought to function solely in interstrand-crosslinking repair is Pso2. Pso2 deficient cells display sensitivity towards ICL agents and accumulate DNA double strand breaks upon exposure. However, Pso2 is not required for repair of DNA double strand breaks generated by other means, suggesting that these particular breaks are unique requiring Pso2 processing for successful repair. To identify what characteristics these breaks possess and what role Pso2 plays in processing theses breaks, a thorough <em>in vivo</em> and <em>in vitro </em>characterization of Pso2 was conducted.</p> <p>Pso2 was found to be a 5’-exonuclease independent of DNA structure and length but completely dependent on a 5’-phosphate. Pso2 also displayed structure-specific DNA hairpin-opening activity at the 3’ end two nucleotides from the apex. This activity was required for repair of genomic DNA capped by hairpin structures in the absence of ICL inducing agents as well those generated in response to ICL damage. The constitutively active DNA hairpin endonuclease β-CASP domain of Artemis was able to partially restore the DNA hairpin-opening deficiency and suppress the ICL defect in a <em>pso2 </em>null strain. This suggests that Pso2 acts as an endonuclease in ICL repair and that DNA hairpins may be an encountered intermediate, leading to further understanding of how this unique protein function in ICL repair as well as the repair mechanism itself.</p> / Doctor of Science (PhD)
|
5 |
Functional Studies of the Interstrand Cross-link Repair Protein, Pso2Dowling, Michelle L. 26 July 2014 (has links)
<p>DNA interstrand cross-links (ICLs) constitute one of the most severe types of DNA damage. ICLs covalently tether both strands of duplex DNA, preventing unwinding and polymerase access during replication and transcription. This obstruction is exploited in cancer chemotherapy since it leads to replication fork collapse, double strand breaks (DSBs), and cell death. Mechanistic understanding of how eukaryotic cells repair these specific lesions, however, is still in its infancy. It is understood that ICL repair consists of a multitude of intersecting and connecting repair pathways that rely on interplay between critical protein factors. Interestingly, Pso2 has been identified as an integral component of the ICL repair pathway in <em>Saccharomyces cerevisiae</em>. Pso2 is a yeast nuclease from the β-CASP family of proteins that function predominantly in the repair of ICLs. It has been recognized as the only protein that does not serve a redundant function in any other DNA repair pathway. It remains unclear how the ICL repair pathway generates DNA intermediates suitable for high fidelity repair dependent on Pso2 nuclease activity. Here we show that Pso2 possesses structure-specific endonuclease activity that may be essential to its role in ICL repair. Direct <em>in vitro</em> activity assessment of the protein on a site-specific ICL proved to be inconclusive due to the heat-labile nature of the cross-linking agent employed. <em>In vitro </em>activity testing was also performed on various substrates resembling intermediates generated during ICL repair. Biochemical analysis demonstrated that Pso2 cleaves hairpins, stem loops, heterologous loops, and symmetrical bubbles. Although the precise cleavage sites vary between substrates, Pso2 demonstrates preference for the single- to double-stranded junction in the DNA backbone, with similar activity to that previously demonstrated for its human homologue, Artemis. This specific endonuclease activity is stimulated by increased concentrations of phosphate. Through two-dimensional gel electrophoresis, the presence of unique DNA intermediates generated in response to ICL damage <em>in </em><em>vivo </em>was also monitored. Results suggest the generation of hairpin-like intermediates that resemble those tested <em>in vitro</em>. These intermediates persist in the absence of Pso2 but are resolved by exogenous addition of control endonucleases. Our findings expand on previous data that established hairpin-opening activity for this protein and suggest that the structure-specific endonuclease activity demonstrated by Pso2 is important for ICL repair. We anticipate that Pso2 acts on a hairpin-containing DNA substrate in the ICL repair pathway and the resolution of this intermediate is uniquely dependent on Pso2 for the effective repair of ICL damage in yeast. Taking into consideration the current models of ICL repair, both in yeast and humans, possible roles for Pso2 have been described. Achieving a complete mechanistic perspective of this pathway is critical for the therapeutic exploitation of the human homologue, SNM1A. Implications include the potential inhibitory target for increased efficacy of chemotherapy with cross-linking agents.</p> / Master of Science (MSc)
|
Page generated in 0.0362 seconds