• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Partially Integrable Pt-symmetric Hierarchies Of Some Canonical Nonlinear Partial Differential Equations

Pecora, Keri 01 January 2013 (has links)
In this dissertation, we generalize the work of Bender and co-workers to derive new partially-integrable hierarchies of various PT -symmetric, nonlinear partial differential equations. The possible integrable members are identified employing the Painlev´e Test, a necessary but not sufficient integrability condition, and are indexed by the integer n, corresponding to the negative of the order of the dominant pole in the singular part of the Painlev´e expansion for the solution. For the PT -symmetric Korteweg-de Vries (KdV) equation, as with some other hierarchies, the first or n = 1 equation fails the test, the n = 2 member corresponds to the regular KdV equation, while the remainder form an entirely new, possibly integrable hierarchy. Integrability properties of the n = 3 and n = 4 members, typical of partially-integrable systems, including B¨acklund Transformations, a ’near-Lax Pair’, and analytic solutions are derived. The solutions, or solitary waves, prove to be algebraic in form, and the extended homogeneous balance technique appears to be the most efficient in exposing the near-Lax Pair. The PT -symmetric Burgers’ equation fails the Painlev´e Test for its n = 2 case, but special solutions are nonetheless obtained. Also, PT -Symmetric hierarchies of 2+1 Burgers’ and Kadomtsev-Petviashvili equations, which may prove useful in applications are analyzed. Extensions of the Painlev´e Test and Invariant Painlev´e analysis to 2+1 dimensions are utilized, and BTs and special solutions are found for those cases that pass the Painlev´e Test.
2

Iterative method of solving schrodinger equation for non-Hermitian, pt-symmetric Hamiltonians

Wijewardena, Udagamge 01 July 2016 (has links)
PT-symmetric Hamiltonians proposed by Bender and Boettcher can have real energy spectra. As an extension of the Hermitian Hamiltonian, PT-symmetric systems have attracted a great interest in recent years. Understanding the underlying mathematical structure of these theories sheds insight on outstanding problems of physics. These problems include the nature of Higgs particles, the properties of dark matter, the matter-antimatter asymmetry in the universe, and neutrino oscillations. Furthermore, PT-phase transition has been observed in lasers, optical waveguides, microwave cavities, superconducting wires and circuits. The objective of this thesis is to extend the iterative method of solving Schrodinger equation used for an harmonic oscillator systems to Hamiltonians with PT-symmetric potentials. An important aspect of this approach is the high accuracy of eigenvalues and the fast convergence. Our method is a combination of Hill determinant method [8] and the power series expansion. eigenvalues and the fast convergence. One can transform the Schrodinger equation into a secular equation by using a trial wave function. A recursion structure can be obtained using the secular equation, which leads to accurate eigenvalues. Energy values approach to exact ones when the number of iterations is increased. We obtained eigenvalues for a set of PT-symmetric Hamiltonians.
3

Exact Supersymmetric Solution Of Schrodinger Equation For Some Potentials

Aktas, Metin 01 January 2005 (has links) (PDF)
Exact solution of the Schr&ouml / dinger equation with some potentials is obtained. The normal and supersymmetric cases are considered. Deformed ring-shaped potential is solved in the parabolic and spherical coordinates. By taking appropriate values for the parameter q, similar results are obtained for Hulth&eacute / n and exponential type screened potentials. Similarly, Morse, P&ouml / schl-Teller and Hulth&eacute / n potentials are solved for the supersymmetric case. Supersymmetric solution of PT-/non-PT-symmetric and non-Hermitian Morse potential is also studied. The Nikiforov-Uvarov and Hamiltonian Hierarchy methods are used in the calculations. Eigenfunctions and corresponding energy eigenvalues are calculated analytically. Results are in good agreement with ones obtained before.
4

Exact Supersymmteric Solutions Of The Quantum Mechanics

Faridfathi, Gholamreza 01 June 2005 (has links) (PDF)
The supersymmetric solutions of PT-/non-PT symmetric and Hermitian/non-Hermitian forms of quantum systems are obtained by solving the Schr&Auml / odinger equation with the deformed Morse, Hulth&para / en, P&Auml / oschl-Teller, Hyperbolic Kratzer-like, Screened Coulomb, and Exponential-Cosine Screened Coulomb (ECSC) potentials. The Hamiltonian hi- erarchy method is used to get the real energy eigenvalues and corresponding wave functions.
5

Spectre et pseudospectre d'opérateurs non-autoadjoints / Spectra and pseudospectra of non-selfadjoint operators

Henry, Raphaël 29 November 2013 (has links)
L'instabilité du spectre des opérateurs non-autoadjoints constitue la thématique centrale de cette thèse. Notre premier objectif est de mettre en évidence ce phénomène dans le cas de certains modèles naturels tels que l'opérateur d'Airy, l'oscillateur harmonique ou l'oscillateur cubique complexes. Dans ce but, nous nous intéressons au comportement des projecteurs spectraux associés aux valeurs propres de ces opérateurs, poursuivant une démarche initiée par E. B. Davies. Le second objectif de notre travail consiste à montrer de quelle manière ces modèles peuvent contribuer à la compréhension de certains problèmes issus de domaines mathématiques et physiques aussi variés que la mécanique quantique, la supraconductivité ou la théorie du contrôle. Nos résultats sur l'instabilité spectrale de l'oscillateur cubique complexe viennent ainsi corroborer un travail de B. Krejcirik et P. Siegl, soulignant l'impossibilité de fournir une justification rigoureuse aux théories actuelles de la mécanique quantique non-hermitienne. Par ailleurs, nous nous appuyons sur les propriétés des modèles mentionnés ci-dessus pour obtenir des résultats sur le spectre et la résolvante d'opérateurs de Schrödinger à potentiels imaginaires purs dans des ouverts bornés. Ces résultats peuvent en particulier être appliqués à l'étude du système de Ginzburg-Landau dépendant du temps en supraconductivité. Enfin, nous présentons des résultats sur la contrôlabilité d'équations paraboliques dégénérées qui reposent sur une étude spectrale et pseudospectrale de l'opérateur d'Airy et de l'oscillateur harmonique complexes. Ce dernier travail est le fruit d'une collaboration avec K. Beauchard, B. Helffer et L. Robbiano. / Spectral instability of non-selfadjoint operators is the main subject of this thesis. Our first goal is to understand the pseudospectral behavior of natural models such as the complex Airy operator, harmonic oscillator and cubic oscillator. To this purpose, we analyze the asymptotic behavior of the spectral projections associated with the eigenvalues of these operators, following a work initiated by E.B. Davies. Our second goal is to illustrate how such models can be used in several problems arising in quantum mechanics, superconductivity or control theory. For instance, our results on the spectral instability of the complex cubic oscillator enable us to confirm that the current theory of non-hermitian quantum mechanics can not be rigorously justified, as recently pointed out by B. Krejcirik and P. Siegl. On the other hand, we obtain spectral information and resolvent estimates for semi-classical Schrödinger operators with purely imaginary potentials in a bounded domain, by using the properties of the models mentioned above. In particuler, these results entail some information on the time-dependent Ginzburg-Landau system in superconductivity. Finally, we reproduce a joint work with K. Beauchard, B. Helffer et L. Robbiano in which the controllability of some degenerate parabolic operators is investigated. An analysis of the spectrum and resolvent of the complex Airy operator and harmonic oscillator yields some controllability and non-controllability results for the equation under consideration.

Page generated in 0.0522 seconds