• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 1
  • Tagged with
  • 17
  • 17
  • 11
  • 11
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Bond and Material Properties of Grade 270 and Grade 300 Prestressing Strands

Loflin, Bryan 28 July 2008 (has links)
The first objective of this thesis was to determine the material properties of grade 270 and grade 300 prestressing strand of various sizes. Tension tests were performed on each type of strand. The data from these tests was used to determine modulus of elasticity, yield stress, ultimate stress, and ultimate elongation for each strand. The yield stresses and ultimate stresses for many of the strands did not meet the requirements found in ASTM A416. The ultimate elongation results far exceeded the requirements and the measured elastic moduli were near the modulus recommended by AASHTO LRFD. A secondary objective from the tension tests was to evaluate a gripping method which used aluminum tubing to cushion the strands against notching. The grips performed very well. Most of the strand breaks did not occur in the grips and when a strand did break in the grips, the failure occurred after significant post-yield elongation. The second objective was to evaluate the bond properties of grade 270 and grade 300 prestressing strands. The North American Strand Producers (NASP) Bond Test and Large Block Pullout Test (LBPT) were performed on six different strand grade and strand size combinations. Both of the tests are simple pullout tests on untensioned strand. The results for each strand type were compared to one another as well as to measured transfer and development lengths from beams using the strand from the same reel. All of the strands showed sufficient bond in the beams, but one strand type did fail both the NASP Test and the LBPT. Both pullout tests were acceptable methods to evaluate strand surface condition and the benchmarks set for 0.5 in. diameter regular strand were conservative for the strands used in this thesis. Little difference was evident in the bond performance of grade 270 and grade 300 prestressing strand. / Master of Science
12

Avaliação da interação solo-fitas metálicas e poliméricas para soluções em terra armada em solos não convencionais / Evaluation of the interaction of soil and metal strips and soil and polymeric strips applied to mechanically stabilized earth with concrete wall facing reinforce with unconventional soil

Maparagem, Albano Sâlzon 22 August 2011 (has links)
Grande percentagem do território brasileiro é coberta por solos finos (% passando peneira # 200 > 50%), geralmente de origem tropical, que poderiam ser classificados como solos de baixa capacidade de drenagem. Estes solos não atendem às recomendações técnicas para solos de aterro de estruturas reforçadas, conforme exigido pela AASHTO e BS 8006. Neste trabalho foi avaliado experimentalmente um dos parâmetros mais importantes de projeto de Terra Armada, que condiciona o mecanismo de transferência de carga, o coeficiente de atrito aparente solo-fita metálica (f*). Foi avaliada a influência das características dos solos para as classes de solos estabelecidas pela NBR 9286/86 para o caso de fitas metálicas, e, dos critérios que sustentam o uso de fitas poliméricas, sob diversas tensões verticais atuantes nas fitas, simulando o efeito da profundidade. As informações foram obtidas através de ensaios de arrancamento de fitas metálicas e poliméricas realizados em laboratório e depois comparadas aos resultados teóricos da norma e àqueles preconizados para o uso de fitas poliméricas. Os ensaios realizados com as fitas em solo não convencional 1 e em areia mal graduada, mostraram que para profundidades equivalentes a tensões verticais até 50 kPa, os dois tipos de inclusões possuem valores de coeficiente de interação com o solo maiores que a unidade, isso tornaria razoável o seu uso sob o ponto de vista deste parâmetro e nas condições da realização dos ensaios, quando comparado com a norma, e com os critérios que sustentam o uso das fitas poliméricas em técnica de solo armado. No entanto, para maiores profundidades, a interação apresenta uma tendência de diminuição. O solo não convencional 2 valores da interação muito baixos. Foram instalados strain gages ao longo do comprimento das fitas para monitoramento dos esforços no maciço. Nota-se que esforços elevados ocorreram nas regiões mais próximas do ponto de aplicação da força de arrancamento. / A large percentage of Brazil\'s territory is covered with fine tropical soil (50% passing #200) which can be classified as soils with low drainage capacity. These soils do not meet the technical recommendations for backfill of reinforced soil structures by AASHTO and BS 8006. This paper presents the result of an experimental evaluation of one of the most important design parameters of mechanically stabilized earth with concrete wall facing. The apparent friction coefficient of soil-steel strips and soil-polymeric strips is the project parameter. Also was evaluated the influence of soil characteristics for soil types listed by the NBR 9286/86 for metal strips and for the criteria that support the use of polymeric strips. The evaluation included the application of different vertical stresses on the strips simulating the effect of depth. The information obtained from pullout tests performed in laboratory was compared to the standard theoretical values and design values for polymeric strips. Tests performed on strips in nonconventional soil (1) and poorly graded sand showed that at depths equivalent to vertical stresses up to 50 kPa the two types of inclusions have coefficients of interaction greater than unity, which appears reasonable. Therefore, such soils can be used as backfill soils in the conditions tested and at equal or lesser stress levels. Nonconventional soil (2) showed low value of the friction coefficient. The strain gages installed along the length of the strips recorded the distribution of tensile stress in pull-out tests. Higher tensile stress was recorded by the gages nearest the point of application of the pull-out force.
13

Avaliação da interação solo-fitas metálicas e poliméricas para soluções em terra armada em solos não convencionais / Evaluation of the interaction of soil and metal strips and soil and polymeric strips applied to mechanically stabilized earth with concrete wall facing reinforce with unconventional soil

Albano Sâlzon Maparagem 22 August 2011 (has links)
Grande percentagem do território brasileiro é coberta por solos finos (% passando peneira # 200 > 50%), geralmente de origem tropical, que poderiam ser classificados como solos de baixa capacidade de drenagem. Estes solos não atendem às recomendações técnicas para solos de aterro de estruturas reforçadas, conforme exigido pela AASHTO e BS 8006. Neste trabalho foi avaliado experimentalmente um dos parâmetros mais importantes de projeto de Terra Armada, que condiciona o mecanismo de transferência de carga, o coeficiente de atrito aparente solo-fita metálica (f*). Foi avaliada a influência das características dos solos para as classes de solos estabelecidas pela NBR 9286/86 para o caso de fitas metálicas, e, dos critérios que sustentam o uso de fitas poliméricas, sob diversas tensões verticais atuantes nas fitas, simulando o efeito da profundidade. As informações foram obtidas através de ensaios de arrancamento de fitas metálicas e poliméricas realizados em laboratório e depois comparadas aos resultados teóricos da norma e àqueles preconizados para o uso de fitas poliméricas. Os ensaios realizados com as fitas em solo não convencional 1 e em areia mal graduada, mostraram que para profundidades equivalentes a tensões verticais até 50 kPa, os dois tipos de inclusões possuem valores de coeficiente de interação com o solo maiores que a unidade, isso tornaria razoável o seu uso sob o ponto de vista deste parâmetro e nas condições da realização dos ensaios, quando comparado com a norma, e com os critérios que sustentam o uso das fitas poliméricas em técnica de solo armado. No entanto, para maiores profundidades, a interação apresenta uma tendência de diminuição. O solo não convencional 2 valores da interação muito baixos. Foram instalados strain gages ao longo do comprimento das fitas para monitoramento dos esforços no maciço. Nota-se que esforços elevados ocorreram nas regiões mais próximas do ponto de aplicação da força de arrancamento. / A large percentage of Brazil\'s territory is covered with fine tropical soil (50% passing #200) which can be classified as soils with low drainage capacity. These soils do not meet the technical recommendations for backfill of reinforced soil structures by AASHTO and BS 8006. This paper presents the result of an experimental evaluation of one of the most important design parameters of mechanically stabilized earth with concrete wall facing. The apparent friction coefficient of soil-steel strips and soil-polymeric strips is the project parameter. Also was evaluated the influence of soil characteristics for soil types listed by the NBR 9286/86 for metal strips and for the criteria that support the use of polymeric strips. The evaluation included the application of different vertical stresses on the strips simulating the effect of depth. The information obtained from pullout tests performed in laboratory was compared to the standard theoretical values and design values for polymeric strips. Tests performed on strips in nonconventional soil (1) and poorly graded sand showed that at depths equivalent to vertical stresses up to 50 kPa the two types of inclusions have coefficients of interaction greater than unity, which appears reasonable. Therefore, such soils can be used as backfill soils in the conditions tested and at equal or lesser stress levels. Nonconventional soil (2) showed low value of the friction coefficient. The strain gages installed along the length of the strips recorded the distribution of tensile stress in pull-out tests. Higher tensile stress was recorded by the gages nearest the point of application of the pull-out force.
14

Development of High Early-Strength Concrete for Accelerated Bridge Construction Closure Pour Connections

Castine, Stephanie 11 July 2017 (has links) (PDF)
Accelerated bridge construction (ABC) has become a popular alternative to using traditional construction techniques in new bridge construction and existing bridge deck replacement because of the reduction of time spent in field activities. A key feature of bridges built using ABC techniques is the extensive use of prefabricated components. Prefabricated components are joined in the field using small volume closure pours involving high performance materials (steel and concrete) to ensure adequate transfer of forces between components. To date, the materials developed for closure pours have been based on proprietary components, so a need has arisen for development of mixes that use generic components. The goal of this research was to create a method to develop concrete mixtures that are designed using generic constituents and that satisfy performance requirements of accelerated bridge construction closure pours in New England, primarily high early strength and long-term durability. Two concrete mixtures were developed with a primary goal of reaching high-early strength while maintaining constructability. The secondary goal of the concrete mixtures was to be durable; therefore, measures were taken during the development of the concrete mixture to generate a mixture that also had durable properties.
15

Tensile behaviour of steel-reinforced elements made of strain-hardening cement-based composites

Mündecke, Eric 01 October 2018 (has links)
Hochduktiler Beton ist ein mit kurzen Kunststofffasern bewehrter Hochleistungs-verbundwerkstoff auf Zementbasis, der unter Zugbelastung eine hohe nichtelastische Verformbarkeit und ein verfestigendes Materialverhalten aufweist. Dieses Verhalten wird durch die Zugabe von diskontinuierlich verteilten Kurzfasern aus Kunststoff erzielt. In der vorliegenden Arbeit wurden einachsige Bauteilzugversuche durchgeführt auf deren Basis das globale und lokale Zugtragverhalten der großformatigen Versuchskörper beschrieben werden kann. Ausgangspunkt sind experimentelle Untersuchungen zum Tragverhalten des Stabstahls und des hochduktilen Betons sowie zu deren gemeinsamen Verbundverhalten. Die Untersuchungen zeigen, dass der Herstellungsprozess das Betongefüge und damit auch das mechanische Verhalten von hochduktilem Beton beeinflusst und dieser auf Grund seiner Zusammensetzung ein ausgeprägtes Schwindverhalten aufweist. Beides muss bei der Untersuchung großformatiger Versuchskörper berücksichtigt werden. Dazu wurden sowohl unbewehrte als auch bewehrte Dehnkörper mit unterschiedlichem Bewehrungsgehalt unter kontrollierten Herstellungsbedingungen in einem konventionellen Mischwerk hergestellt. Die Ergebnisse der experimentellen Untersuchung erlauben die Abbildung des Last-Verformungsverhaltens unter Berücksichtigung der hohen Schwindmaße durch isoliert ermittelte Spannungs-Dehnungs-Beziehungen des hochduktilen Betons und des reinen Stahls. Dieses Verfahren erlaubt eine einfache Beschreibung des kombinierten Tragverhaltens unter Berücksichtigung der rissüberbrückenden Wirkung der Fasern. / SHCC is an advanced construction material developed especially for strain-hardening, quasi-ductile behaviour. Both are achieved through the combined interaction of short polymer fibres dispersed in the cementitious matrix. The resulting tensile behaviour of SHCC is characterized by a progressive formation of multiple cracks and high strain capacity, which influences the structural behaviour especially in combination with steel reinforcement. This thesis reports on experimental investigations to analyse the load-bearing behaviour of R/SHCC members. The investigations included the determination of relevant material properties as well as uniaxial tension tests on steel reinforced slab elements. The aim was to study the effect of multiple cracking on the bond interaction with steel reinforcement and their combined load-deformation behaviour. Specific attention was also given to the influence of the production process and shrinkage behaviour of SHCC. It was shown that production and size related changes of material properties influence the cracking behaviour of SHCC, which can lead to a significant reduction of tensile strain capacity in a structural element. The interaction with steel reinforcement, on the other hand, was found to facilitate multiple cracking and enhance tensile strain capacity during the stage of elastic steel deformations. However, a mutual dependency of SHCC fracture and plastic steel deformations could be observed in the post-yielding stage of the steel rebar. The experimental results were discussed with respect to their implications for constitutive modelling of the tensile load-bearing behaviour. The resulting relationships are based upon the individual material behaviour as well as their bond interaction. Further to that, the effects of SHCC shrinkage and early strain-hardening of steel reinforcement were assessed based on the experimental data. These results contribute to the understanding of the mechanical processes in order to determine the behaviour of steel reinforced SHCC for practical applications.
16

Mechanisms of the interaction between continuous and short fibres in textile-reinforced concrete (TRC) / Mechanismen der Wechselwirkungen zwischen Endlos- und Kurzfasern in textilbewehrtem Beton

Barhum, Rabea 12 September 2014 (has links) (PDF)
This thesis reports on experimental investigations of the mechanisms inherent in the joint action of short and continuous fibres in high-performance, cement-based composites. Experiments on different levels of observation (macro- meso- and micro-levels) were performed to provide detailed insights into the various effects of adding different types of short fibres (dispersed AR glass, integral AR glass and dispersed carbon fibres) on the strength, deformation, and failure behaviour of textile-reinforced concrete (TRC) subjected to tensile loading. Moreover, visual inspections of the specimens' surfaces and microscopic investigation of the fracture surfaces and the interface zone between fibre and matrix were performed and evaluated. Subsequently, the mathematical descriptions for TRC with short fibres under deformation controlled tensile loading conditions were derived based on a multi-scale rheological-statistical modelling approach. Based on a literature review, the state of the art is presented and discussed to identify key questions that are yet to be answered satisfactorily. This provides the starting point for the investigations presented in this thesis. The experimental program on the macro-level included uniaxial tension tests performed on thin, narrow plates reinforced by: a) only textile reinforcement, b) only short fibres, and c) hybrid reinforcement (both textile reinforcement with the addition of short fibres). Special attention was directed toward the course of the stress-strain relationship, crack pattern development, and fibre failure behaviour. The stress-strain curves resulting from uniaxial tension testing demonstrated clearly the positive influence of all types of short fibre on the mechanical performance of TRC. While the first-crack stress in TRC specimens increased significantly due to the addition of short fibres, an expansion of the strain region, where multiple cracks form, was observed for the stress-strain curves for TRC with added short fibres. The visual inspection of the specimens\' surfaces showed a higher number of cracks and finer crack patterns for given strain levels in the cases when short fibres were added to TRC. Moreover, depending on fibre type, the positive effects of the addition of short fibres on both tensile strength and work-to-fracture of the composite were found to vary significantly. The findings at the micro- and meso-levels of observation provided to a great extent a core of understanding of some particular mechanical behavioural properties of TRC with short fibres at the macro-level of observation. Thus, in addition to the experimental testing performed on composite materials with different parameter combinations, investigations of the action of individual material components, i.e., multifilament-yarns and single short fibres, embedded into cement-based matrices were carried out. It was found that short fibres indeed improve the bond between multifilament-yarns and the surrounding matrix. By their random positioning on the yarn\'s surface, short fibres built new adhesive cross-links which provided extra connecting points to the surrounding matrix. Furthermore, the water-to-binder ratio of the matrix influenced bond quality between fibre and matrix, i.e., various degrees of matrix-fibre bond were observed. As a result, the mechanical behaviour of the composite varied with w/b: While the good bond of the fibre embedded in a matrix with a low water-to-binder ratio leads to increase in stiffness and strength of the composite, fibres with weak bonding can be considered as defects with respect to stiffness as they lead to a decrease in the value. The thesis further derives the mathematical relationships for TRC with the addition of short fibres under deformation-controlled tensile loading. A physically based rheological model consisting of simple rheological elements was developed based on the experimental results on the micro-scale, using single-fibre pullout tests. Special attention was paid to the gradual de-bonding process and the resulting force-displacement branch. The model adequately reproduced both relevant fibre failure scenarios: fibre fracture and fibre pullout. By means of statistical procedures the combination of these models led to description of the stress-crack opening behaviour of an individual crack bridged by the given number of short fibres. The stress-strain relation for TRC with short fibres subjected to tensile loading was then derived. The concept followed at the macro-level of observation was modelling separately the three main regions of the characteristic stress-strain curve. The regions of crack-free material and crack-widening were considered linear and described based on the corresponding characteristic values of each region. The behaviour of the multiple cracking region was derived by considering an increasing number of cracks in serial interconnection and the contribution of the uncracked matrix in between. The stress transfer, i.e., bridging stress, across the crack was determined based on the contribution of both short fibres and multifilament-yarns. Behaviour of individual cracks was adjusted by varying the number of bridging fibres in different cracks and by varying the yarn bridging stress according to range observed in the pullout experiments. / In der vorliegenden Arbeit wird über Untersuchungen zu den Mechanismen der Wechselwirkungen zwischen Kurz- und Endlosfasern in zement-basierenten Hochleistungskompositen berichtet. Hierzu wurden experimentelle Untersuchungen auf verschiedenen Betrachtungsebenen (Makro-, Meso- und Mikroebene) durchgeführt mit dem Ziel, detaillierte Erkenntnisse zu den Auswirkungen der Zugabe von verschiedenen Arten von Kurzfasern (disperse und integrale AR-Glasfasern, Kohlenstofffasern) hinsichtlich des Festigkeits-, Verformungs- und Bruchverhaltens von Textilbeton (engl.: textile-reinforced concrete = TRC) unter Zugbeanspruchung zu gewinnen. Die Bruchflächen sowie die Gestalt der Interphase zwischen der Bewehrung aus Textilien oder Kurzfasern und der umhüllenden zemengebundenen Matrix wurden mit optischen und elektronenmikroskopischen Verfahren hinsichtlich der Wechselwirkungsphänomene ausgewertet. Die Ergebnisse der experimentellen Arbeiten bildeten den Ausgangspunkt für die mathematischen Beschreibungen für TRC mit Kurzfasern unter verformungsgesteuerter Zugbelastung. Die Formulierungen erfolgten auf Grundlage multiskalarer rheologisch-statistischer Modellansätze. In einer Literatursichtung wurde zunächst der Kenntnisstand zu den Materialien und zum Verhalten von TRC und Faserbeton unter Zugbeanspruchung dargestellt und diskutiert. Die noch zu erforschenden Fragen wurden präzisiert und die Grundlagen für deren Untersuchung geschaffen. Bei den Experimenten auf der Makroebene wurden drei Bewehrungsvarianten betrachtet: a) textile Bewehrung, b) Kurzfaserbewehrung, und c) hybride Bewehrung (Textil und Kurzfasern). An Dehnkörpern wurde die Spannungs-Dehnungsbeziehung unter einachsiger Zugbelastung studiert und dabei das Rissbild und die Phänomene des Faserversagens detailliert beobachtet. Anhand der Spannungs-Dehnungsbeziehungen konnte gezeigt werden, dass die Zugabe von Kurzfasern bei allen untersuchten Kurzfaserarten zu einer erheblichen Verbesserung der Leistungsfähigkeit von Textilbeton führt. Dies zeigte sich unter anderem in einer ausgeprägten Anhebung der Erstrissspannung sowie der Entwicklung von zahlreicheren und damit feineren Rissen, die zu einer Verbesserung der Duktilität führten. Ebenso wurden Steigerungen der Zugfestigkeit und der Energiedissipation festgestellt. In welchem Maß diese Änderungen stattfinden, hängt von der Art der Kurzfasern ab. Die Experimente auf der Mikro- und Mesoebene wurden so konzipiert, dass sie die Erkundung der Mechanismen, die den auf der Makroebene beobachteten Phänomenen zugrunde liegen, unterstützten. Auf der Mesoebene wurden Mulitifilamentgarnauszugversuche (mit und ohne Kurzfasern in der Matrix) und auf der Mikroebene Einzelfaserauszugsversuche für alle betrachteten Kurzfasertypen durchgeführt. Es wurde festgestellt, dass die Kurzfasern den Verbund zwischen Matrix und Multifilamentgarn verbessern. Kurzfasern können bei zufälliger Positionierung an der Garnoberfläche zusätzliche Haftbrücken bzw. Verbindungsstellen zu umgebender Matrix bilden. Für die Verbundqualität zwischen Faser und Matrix ist der Wasser-Bindemittel-Wert (W/B-Wert) von entscheidender Bedeutung. Bei einer Matrix mit niedrigem W/B-Wert führt die gute Qualität des Verbunds der eingebetteten Fasern zu einer Erhöhung der Steifigkeit sowie der Festigkeit des Komposites. Bei hohem W/B-Wert haben die Fasern einen schlechten Verbund zur Matrix und müssen überwiegend als Fehl- bzw. Schwachstellen betrachtet werden. Festigkeit und Steifigkeit des Komposits nehmen daher ab. Die Ableitung mathematischer Beziehungen für Textilbeton mit Zugabe von Kurzfasern unter verformungsgesteuerter Zugbelastung erfolgte aufbauend auf den Ergebnissen der experimentellen Untersuchungen auf der Mikroebene. Die Einzelfaserauszugsversuche wurden mit Hilfe eines physikalisch basierten Modelles nachgebildet, das aus einfachen rheologischen Elementen besteht. Phänomene wie die graduelle Ablösung der Faser, Faserbruch und Faserauszug wurden durch eine entsprechende Kombination und Parametrierung der rheologischen Elemente abgebildet. Im Ergebnis wurden zutreffende Kraft-Rissöffnungsbeziehungen modelliert. Auf der Mesoebene wurde ein einzelner Riss modelliert, der sowohl durch Multifilamentgarne als auch Kurzfasern überbrückt werden kann. Der rissüberbrückenden Wirkung der zahlreichen Kurzfasern wurde mit Hilfe statistischer Methoden rechnung getragen, die unterschiedliche Faser-Risswinkel und Einbindelängen berücksichtigen. Die resultierende Spannungs-Rissöffnungskurve umfasst die rissüberbrückende Wirkung von Multifilamentgarnen und Kurzfasern. Auf der Makroebene kann die charakteristische Spannungs-Dehnungsbeziehung von TRC unter Zugbelastung in 3 Bereiche (Zustände I, IIa, IIb) unterteilt werden. Die Kurvenverläufe im Zustand I (ungerissenen) sowie Zustand IIb (abgeschlossenes Rissbild) wurden als linear betrachtet und basierend auf den entsprechenden charakteristischen Werten des jeweiligen Zustands beschrieben. Das Verhalten im Zustand IIa (multiple Rissbildung) wurde durch die Reihenschaltung einer zunehmenden Anzahl von Rissen sowie den Beitrags der ungerissenen Matrix zwischen den Rissen modelliert.
17

Mechanisms of the interaction between continuous and short fibres in textile-reinforced concrete (TRC)

Barhum, Rabea 21 November 2013 (has links)
This thesis reports on experimental investigations of the mechanisms inherent in the joint action of short and continuous fibres in high-performance, cement-based composites. Experiments on different levels of observation (macro- meso- and micro-levels) were performed to provide detailed insights into the various effects of adding different types of short fibres (dispersed AR glass, integral AR glass and dispersed carbon fibres) on the strength, deformation, and failure behaviour of textile-reinforced concrete (TRC) subjected to tensile loading. Moreover, visual inspections of the specimens' surfaces and microscopic investigation of the fracture surfaces and the interface zone between fibre and matrix were performed and evaluated. Subsequently, the mathematical descriptions for TRC with short fibres under deformation controlled tensile loading conditions were derived based on a multi-scale rheological-statistical modelling approach. Based on a literature review, the state of the art is presented and discussed to identify key questions that are yet to be answered satisfactorily. This provides the starting point for the investigations presented in this thesis. The experimental program on the macro-level included uniaxial tension tests performed on thin, narrow plates reinforced by: a) only textile reinforcement, b) only short fibres, and c) hybrid reinforcement (both textile reinforcement with the addition of short fibres). Special attention was directed toward the course of the stress-strain relationship, crack pattern development, and fibre failure behaviour. The stress-strain curves resulting from uniaxial tension testing demonstrated clearly the positive influence of all types of short fibre on the mechanical performance of TRC. While the first-crack stress in TRC specimens increased significantly due to the addition of short fibres, an expansion of the strain region, where multiple cracks form, was observed for the stress-strain curves for TRC with added short fibres. The visual inspection of the specimens\' surfaces showed a higher number of cracks and finer crack patterns for given strain levels in the cases when short fibres were added to TRC. Moreover, depending on fibre type, the positive effects of the addition of short fibres on both tensile strength and work-to-fracture of the composite were found to vary significantly. The findings at the micro- and meso-levels of observation provided to a great extent a core of understanding of some particular mechanical behavioural properties of TRC with short fibres at the macro-level of observation. Thus, in addition to the experimental testing performed on composite materials with different parameter combinations, investigations of the action of individual material components, i.e., multifilament-yarns and single short fibres, embedded into cement-based matrices were carried out. It was found that short fibres indeed improve the bond between multifilament-yarns and the surrounding matrix. By their random positioning on the yarn\'s surface, short fibres built new adhesive cross-links which provided extra connecting points to the surrounding matrix. Furthermore, the water-to-binder ratio of the matrix influenced bond quality between fibre and matrix, i.e., various degrees of matrix-fibre bond were observed. As a result, the mechanical behaviour of the composite varied with w/b: While the good bond of the fibre embedded in a matrix with a low water-to-binder ratio leads to increase in stiffness and strength of the composite, fibres with weak bonding can be considered as defects with respect to stiffness as they lead to a decrease in the value. The thesis further derives the mathematical relationships for TRC with the addition of short fibres under deformation-controlled tensile loading. A physically based rheological model consisting of simple rheological elements was developed based on the experimental results on the micro-scale, using single-fibre pullout tests. Special attention was paid to the gradual de-bonding process and the resulting force-displacement branch. The model adequately reproduced both relevant fibre failure scenarios: fibre fracture and fibre pullout. By means of statistical procedures the combination of these models led to description of the stress-crack opening behaviour of an individual crack bridged by the given number of short fibres. The stress-strain relation for TRC with short fibres subjected to tensile loading was then derived. The concept followed at the macro-level of observation was modelling separately the three main regions of the characteristic stress-strain curve. The regions of crack-free material and crack-widening were considered linear and described based on the corresponding characteristic values of each region. The behaviour of the multiple cracking region was derived by considering an increasing number of cracks in serial interconnection and the contribution of the uncracked matrix in between. The stress transfer, i.e., bridging stress, across the crack was determined based on the contribution of both short fibres and multifilament-yarns. Behaviour of individual cracks was adjusted by varying the number of bridging fibres in different cracks and by varying the yarn bridging stress according to range observed in the pullout experiments. / In der vorliegenden Arbeit wird über Untersuchungen zu den Mechanismen der Wechselwirkungen zwischen Kurz- und Endlosfasern in zement-basierenten Hochleistungskompositen berichtet. Hierzu wurden experimentelle Untersuchungen auf verschiedenen Betrachtungsebenen (Makro-, Meso- und Mikroebene) durchgeführt mit dem Ziel, detaillierte Erkenntnisse zu den Auswirkungen der Zugabe von verschiedenen Arten von Kurzfasern (disperse und integrale AR-Glasfasern, Kohlenstofffasern) hinsichtlich des Festigkeits-, Verformungs- und Bruchverhaltens von Textilbeton (engl.: textile-reinforced concrete = TRC) unter Zugbeanspruchung zu gewinnen. Die Bruchflächen sowie die Gestalt der Interphase zwischen der Bewehrung aus Textilien oder Kurzfasern und der umhüllenden zemengebundenen Matrix wurden mit optischen und elektronenmikroskopischen Verfahren hinsichtlich der Wechselwirkungsphänomene ausgewertet. Die Ergebnisse der experimentellen Arbeiten bildeten den Ausgangspunkt für die mathematischen Beschreibungen für TRC mit Kurzfasern unter verformungsgesteuerter Zugbelastung. Die Formulierungen erfolgten auf Grundlage multiskalarer rheologisch-statistischer Modellansätze. In einer Literatursichtung wurde zunächst der Kenntnisstand zu den Materialien und zum Verhalten von TRC und Faserbeton unter Zugbeanspruchung dargestellt und diskutiert. Die noch zu erforschenden Fragen wurden präzisiert und die Grundlagen für deren Untersuchung geschaffen. Bei den Experimenten auf der Makroebene wurden drei Bewehrungsvarianten betrachtet: a) textile Bewehrung, b) Kurzfaserbewehrung, und c) hybride Bewehrung (Textil und Kurzfasern). An Dehnkörpern wurde die Spannungs-Dehnungsbeziehung unter einachsiger Zugbelastung studiert und dabei das Rissbild und die Phänomene des Faserversagens detailliert beobachtet. Anhand der Spannungs-Dehnungsbeziehungen konnte gezeigt werden, dass die Zugabe von Kurzfasern bei allen untersuchten Kurzfaserarten zu einer erheblichen Verbesserung der Leistungsfähigkeit von Textilbeton führt. Dies zeigte sich unter anderem in einer ausgeprägten Anhebung der Erstrissspannung sowie der Entwicklung von zahlreicheren und damit feineren Rissen, die zu einer Verbesserung der Duktilität führten. Ebenso wurden Steigerungen der Zugfestigkeit und der Energiedissipation festgestellt. In welchem Maß diese Änderungen stattfinden, hängt von der Art der Kurzfasern ab. Die Experimente auf der Mikro- und Mesoebene wurden so konzipiert, dass sie die Erkundung der Mechanismen, die den auf der Makroebene beobachteten Phänomenen zugrunde liegen, unterstützten. Auf der Mesoebene wurden Mulitifilamentgarnauszugversuche (mit und ohne Kurzfasern in der Matrix) und auf der Mikroebene Einzelfaserauszugsversuche für alle betrachteten Kurzfasertypen durchgeführt. Es wurde festgestellt, dass die Kurzfasern den Verbund zwischen Matrix und Multifilamentgarn verbessern. Kurzfasern können bei zufälliger Positionierung an der Garnoberfläche zusätzliche Haftbrücken bzw. Verbindungsstellen zu umgebender Matrix bilden. Für die Verbundqualität zwischen Faser und Matrix ist der Wasser-Bindemittel-Wert (W/B-Wert) von entscheidender Bedeutung. Bei einer Matrix mit niedrigem W/B-Wert führt die gute Qualität des Verbunds der eingebetteten Fasern zu einer Erhöhung der Steifigkeit sowie der Festigkeit des Komposites. Bei hohem W/B-Wert haben die Fasern einen schlechten Verbund zur Matrix und müssen überwiegend als Fehl- bzw. Schwachstellen betrachtet werden. Festigkeit und Steifigkeit des Komposits nehmen daher ab. Die Ableitung mathematischer Beziehungen für Textilbeton mit Zugabe von Kurzfasern unter verformungsgesteuerter Zugbelastung erfolgte aufbauend auf den Ergebnissen der experimentellen Untersuchungen auf der Mikroebene. Die Einzelfaserauszugsversuche wurden mit Hilfe eines physikalisch basierten Modelles nachgebildet, das aus einfachen rheologischen Elementen besteht. Phänomene wie die graduelle Ablösung der Faser, Faserbruch und Faserauszug wurden durch eine entsprechende Kombination und Parametrierung der rheologischen Elemente abgebildet. Im Ergebnis wurden zutreffende Kraft-Rissöffnungsbeziehungen modelliert. Auf der Mesoebene wurde ein einzelner Riss modelliert, der sowohl durch Multifilamentgarne als auch Kurzfasern überbrückt werden kann. Der rissüberbrückenden Wirkung der zahlreichen Kurzfasern wurde mit Hilfe statistischer Methoden rechnung getragen, die unterschiedliche Faser-Risswinkel und Einbindelängen berücksichtigen. Die resultierende Spannungs-Rissöffnungskurve umfasst die rissüberbrückende Wirkung von Multifilamentgarnen und Kurzfasern. Auf der Makroebene kann die charakteristische Spannungs-Dehnungsbeziehung von TRC unter Zugbelastung in 3 Bereiche (Zustände I, IIa, IIb) unterteilt werden. Die Kurvenverläufe im Zustand I (ungerissenen) sowie Zustand IIb (abgeschlossenes Rissbild) wurden als linear betrachtet und basierend auf den entsprechenden charakteristischen Werten des jeweiligen Zustands beschrieben. Das Verhalten im Zustand IIa (multiple Rissbildung) wurde durch die Reihenschaltung einer zunehmenden Anzahl von Rissen sowie den Beitrags der ungerissenen Matrix zwischen den Rissen modelliert.

Page generated in 0.4863 seconds