• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Airway Pressure, Hypercapnia, and Hypoxia on Pulmonary Vagal Afferents in the Alligator (Alligator Misssissippiensis)

Marschand, Rachel E. 12 1900 (has links)
The American alligator (Alligator mississippiensis) is an aquatic diving reptile with a periodic breathing pattern. Previous work has identified pulmonary stretch receptors (PSR), both rapidly- and slowly-adapting, and intrapulmonary chemoreceptors (IPCs) that modulate breathing patterns in alligators. The purpose of the present study was to identify the effects of prolonged lung inflation and deflation (simulated dives) on PSR and/or IPC firing characteristics in the alligator. The effects of airway pressure, hypercapnia, and hypoxia on dynamic and static responses of pulmonary stretch receptors (PSR) were studied in juvenile alligators (mean mass = 246 g) at 24°C. Receptor activity appeared to be a mixture of slowly-adapting PSRs (SARs) and rapidly-adapting PSRs (RARs) with varying thresholds and degrees of adaptation, but no CO2 sensitivity. Dives were simulated in order to character receptor activity before, during, and after prolonged periods of lung inflation and deflation. Some stretch receptors showed a change in dynamic response, exhibiting inhibition for several breaths after 1 min of lung inflation, but were unaffected by prolonged deflation. For SAR, the post-dive inhibition was inhibited by CO2 and hypoxia alone. These airway stretch receptors may be involved in recovery of breathing patterns and lung volume during pre- and post-diving behavior and apneic periods in diving reptiles. These results suggest that inhibition of PSR firing following prolonged inflation may promote post-dive ventilation in alligators.
2

Regulation of breathing under different pulmonary conditions /

Rieger-Fackeldey, Esther, January 2004 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2004. / Härtill 4 uppsatser.

Page generated in 0.0932 seconds