• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dataset Drift in Radar Warning Receivers : Out-of-Distribution Detection for Radar Emitter Classification using an RNN-based Deep Ensemble

Coleman, Kevin January 2023 (has links)
Changes to the signal environment of a radar warning receiver (RWR) over time through dataset drift can negatively affect a machine learning (ML) model, deployed for radar emitter classification (REC). The training data comes from a simulator at Saab AB, in the form of pulsed radar in a time-series. In order to investigate this phenomenon on a neural network (NN), this study first implements an underlying classifier (UC) in the form of a deep ensemble (DE), where each ensemble member consists of an NN with two independently trained bidirectional LSTM channels for each of the signal features pulse repetition interval (PRI), pulse width (PW) and carrier frequency (CF). From tests, the UC performs best for REC when using all three features. Because dataset drift can be treated as detecting out-of-distribution (OOD) samples over time, the aim is to reduce NN overconfidence on data from unseen radar emitters in order to enable OOD detection. The method estimates uncertainty with predictive entropy and classifies samples reaching an entropy larger than a threshold as OOD. In the first set of tests, OOD is defined from holding out one feature modulation from the training dataset, and choosing this as the only modulation in the OOD dataset used during testing. With this definition, Stagger and Jitter are most difficult to detect as OOD. Moreover, using DEs with 6 ensemble members and implementing LogitNorm to the architecture improves the OOD detection performance. Furthermore, the OOD detection method performs well for up to 300 emitter classes and predictive entropy outperforms the baseline for almost all tests. Finally, the model performs worse when OOD is simply defined as signals from unseen emitters, because of a precision decrease. In conclusion, the implemented changes managed to reduce the overconfidence for this particular NN, and improve OOD detection for REC.

Page generated in 0.0566 seconds