• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • Tagged with
  • 16
  • 16
  • 9
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effect of Full-Annular Pressure Pulses on Axial Turbine Performance

Fernelius, Mark H. 13 December 2013 (has links) (PDF)
Pulse detonation engines show potential to increase the efficiency of conventional gas turbine engines if used in place of the steady combustor. However, since the interaction of pressure pulses with the turbine is not yet well understood, a rig was built to compare steady flow with pulsing flow. Compressed air is used in place of combustion gases and pressure pulses are created by rotating a ball valve with a motor. This work accomplishes two main objectives that are different from previous research in this area. First, steady flow through an axial turbine is compared with full annular pulsed flow closely coupled with the turbine. Second, the error in turbine efficiency is approximately half the error of previous research comparing steady and pulsed flow through an axial turbine. The data shows that a turbine driven by full annular pressure pulses has operation curves that are similar in shape to steady state operation curves, but with a decrease in turbine performance that is dependent on pulsing frequency. It is demonstrated that the turbine pressure ratio increases with pulsed flow through the turbine and that this increase is less for higher pulsing frequencies. For 10 Hz operation the turbine pressure ratio increases by 0.14, for 20 Hz it increases by 0.12, and for 40 Hz it increases by 0.06. It is demonstrated that the peak turbine efficiency is lower for pulsed flow when compared with steady flow. The difference between steady and pulsed flow peak efficiency is less severe at higher pulsing frequencies. For 40 Hz operation the turbine efficiency decreases by 5 efficiency points, for 20 Hz it decreases by 9 points, and for 10 Hz it decreases by 11 points. It is demonstrated that the specific power at a given pressure ratio for pulsed flow is lower than that of steady flow and that the decrease in specific power is lower for higher pulsing frequencies. On average, the difference in specific power between steady and pulsed flow is 0.43 kJ/kg for 40 Hz, 1.40 kJ/kg for 20 Hz, and 1.91 kJ/kg for 10 Hz.
12

AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF PULSE DETONATION ENGINES

ALLGOOD, DANIEL CLAY January 2004 (has links)
No description available.
13

Development and Testing of Pulsed and Rotating Detonation Combustors

St. George, Andrew 27 May 2016 (has links)
No description available.
14

Investigation of Sustained Detonation Devices: the Pulse Detonation Engine-Crossover System and the Rotating Detonation Engine System

Driscoll, Robert B. 26 May 2016 (has links)
No description available.
15

Numerical simulations of unsteady flows in a pulse detonation engine by the conservation element and solution element method

He, Hao 13 March 2006 (has links)
No description available.
16

Characterization of a Rotating Detonation Engine with an Air Film Cooled Outer Body

Chriss, Scott Llewellyn 10 August 2022 (has links)
No description available.

Page generated in 0.0643 seconds