Spelling suggestions: "subject:"pulse waveform"" "subject:"pulse waveforms""
1 |
Beat-to-Beat Estimation of Blood Pressure by Artificial Neural NetworkDastmalchi, Azadeh January 2015 (has links)
High blood pressure is a major public health issue. However, there are many physical and non-physical factors that affect the measurement of blood pressure (BP) over very short time spans. Therefore, it is very difficult to write a mathematical equation which includes all relevant factors needed to estimate accurate BP values. As a result, a possible solution to overcome these limitations is the use of an artificial neural network (ANN). The aim of this research is to design and implement a new ANN approach, which correlates the arterial pulse waveform shape to BP values, for estimation of BP in a single heartbeat. To test the feasibility of this approach, a pilot study was performed on an arterial pulse waveform dataset obtained from 11 patients with normal BP and 11 patients with hypertension. It was found that the proposed method can accurately estimate BP in single heartbeats and satisfy the requirements of the ANSI/AAMI standard for non-invasive measurement of BP.
|
2 |
A Novel Process for Fabricating Membrane-electrode Assemblies with Low Platinum Loading for Use in Proton Exchange Membrane Fuel CellsKarimi, Shahram 31 August 2011 (has links)
A novel method based on pulse current electrodeposition (PCE) employing four different waveforms was developed and utilized for fabricating membrane-electrode assemblies (MEAs) with low platinum loading for use in low-temperature proton exchange membrane fuel cells. It was found that both peak deposition current density and duty cycle control the nucleation rate and the growth of platinum crystallites. Based on the combination of parameters used in this study, the optimum conditions for PCE were found to be a peak deposition current density of 400 mA cm-2, a duty cycle of 4%, and a pulse generated and delivered in the microsecond range utilizing a ramp-down waveform. MEAs prepared by PCE using the ramp-down waveform show performance comparable with commercial MEAs that employ ten times the loading of platinum catalyst. The thickness of the pulse electrodeposited catalyst layer is about 5-7 µm, which is ten times thinner than that of commercial state-of-the-art electrodes.
MEAs prepared by PCE outperformed commercial MEAs when subjected to a series of steady-state and transient lifetime tests. In steady-state lifetime tests, the average cell voltage over a 3000-h period at a constant current density of 619 mA cm-2 for the in-house and the state-of-the-art MEAs were 564 mV and 505 mV, respectively. In addition, the influence of substrate and carbon powder type, hydrophobic polymer content in the gas diffusion layer, microporous layer loading, and the through-plane gas permeability of different gas diffusion layers on fuel cell performance were investigated and optimized.
Finally, two mathematical models based on the microhardness model developed by Molina et al. [J. Molina, B. A. Hoyos, Electrochim. Acta, 54 (2009) 1784-1790] and Milchev [A. Milchev, “Electrocrystallization: Fundamentals of Nucleation And Growth” 2002, Kluwer Academic Publishers, 189-215] were refined and further developed, one based on pure diffusion control and another based on joint diffusion, ohmic and charge transfer control developed by Milchev [A. Milchev, J. Electroanal. Chem., 312 (1991) 267-275 & A. Milchev, Electrochim. Acta, 37 (12) (1992) 2229-2232]. Experimental results validated the above models and a strong correlation between the microhardness and the particle size of the deposited layer was established.
|
3 |
A Novel Process for Fabricating Membrane-electrode Assemblies with Low Platinum Loading for Use in Proton Exchange Membrane Fuel CellsKarimi, Shahram 31 August 2011 (has links)
A novel method based on pulse current electrodeposition (PCE) employing four different waveforms was developed and utilized for fabricating membrane-electrode assemblies (MEAs) with low platinum loading for use in low-temperature proton exchange membrane fuel cells. It was found that both peak deposition current density and duty cycle control the nucleation rate and the growth of platinum crystallites. Based on the combination of parameters used in this study, the optimum conditions for PCE were found to be a peak deposition current density of 400 mA cm-2, a duty cycle of 4%, and a pulse generated and delivered in the microsecond range utilizing a ramp-down waveform. MEAs prepared by PCE using the ramp-down waveform show performance comparable with commercial MEAs that employ ten times the loading of platinum catalyst. The thickness of the pulse electrodeposited catalyst layer is about 5-7 µm, which is ten times thinner than that of commercial state-of-the-art electrodes.
MEAs prepared by PCE outperformed commercial MEAs when subjected to a series of steady-state and transient lifetime tests. In steady-state lifetime tests, the average cell voltage over a 3000-h period at a constant current density of 619 mA cm-2 for the in-house and the state-of-the-art MEAs were 564 mV and 505 mV, respectively. In addition, the influence of substrate and carbon powder type, hydrophobic polymer content in the gas diffusion layer, microporous layer loading, and the through-plane gas permeability of different gas diffusion layers on fuel cell performance were investigated and optimized.
Finally, two mathematical models based on the microhardness model developed by Molina et al. [J. Molina, B. A. Hoyos, Electrochim. Acta, 54 (2009) 1784-1790] and Milchev [A. Milchev, “Electrocrystallization: Fundamentals of Nucleation And Growth” 2002, Kluwer Academic Publishers, 189-215] were refined and further developed, one based on pure diffusion control and another based on joint diffusion, ohmic and charge transfer control developed by Milchev [A. Milchev, J. Electroanal. Chem., 312 (1991) 267-275 & A. Milchev, Electrochim. Acta, 37 (12) (1992) 2229-2232]. Experimental results validated the above models and a strong correlation between the microhardness and the particle size of the deposited layer was established.
|
Page generated in 0.0432 seconds