• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Pulse electric field effect on HeLa cells alignment properties on extracellular matrix protein patterned surface

Jamil, M. Mahadi Abdul, Zaltum, M.A.M., Rahman, N.A.A., Ambar, R., Denyer, Morgan C.T., Javed, F., Sefat, Farshid, Mozafari, M., Youseffi, Mansour 2018 June 1927 (has links)
Yes / Cell behavior in terms of adhesion, orientation and guidance, on extracellular matrix (ECM) molecules including collagen, fibronectin and laminin can be examined using micro contact printing (MCP). These cell adhesion proteins can direct cellular adhesion, migration, differentiation and network formation in-vitro. This study investigates the effect of microcontact printed ECM protein, namely fibronectin, on alignment and morphology of HeLa cells cultured in-vitro. Fibronectin was stamped on plain glass cover slips to create patterns of 25μm, 50μm and 100μm width. However, HeLa cells seeded on 50μm induced the best alignment on fibronectin pattern (7.66° ±1.55SD). As a consequence of this, 50μm wide fibronectin pattern was used to see how fibronectin induced cell guidance of HeLa cells was influenced by 100μs and single pulse electric fields (PEF) of 1kV/cm. The results indicates that cells aligned more under pulse electric field exposure (2.33° ±1.52SD) on fibronectin pattern substrate. Thus, PEF usage on biological cells would appear to enhance cell surface attachment and cell guidance. Understanding this further may have applications in enhancing tissue graft generation and potentially wound repair. / Ministry of Higher Education Malaysia and UTHM Tier 1 Research Grant (U865)

Page generated in 0.0533 seconds