Spelling suggestions: "subject:"pulse shaping"" "subject:"hulse shaping""
11 |
Time domain pulse shaping using a genetic algorithmMori, Andrew 03 1900 (has links)
Thesis (MSc (Physics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Through the use of complex Laser Pulse Shaping, numerous fundamental laser induced processes may be controlled as well as studied. This work serves as
an introduction into Laser Pulse Shaping, with the focus on a simple Pulse
Shaping experiment, as well as to determine whether future, more complex
processes may be similarly controlled.
A description of Laser Pulse Shaping theory is presented here, along with a
full explanation of a simple experiment to maximize second harmonic generation
(SHG) through Pulse Shaping. This experiment is simple on a theoretical
level yet complicated in both implementation as well as operation. The experimental
setup and software integration required hardware compatibility in
multiple programming languages. This work was successful in the sense that
a fully automated dispersion compensation system, accomplished through the
use of a genetic algorithm in a feedback controlled loop, was constructed and
tested.
The success of this experiment and the understanding gained in this work
has laid the foundation for further complex Pulse Shaping systems to be achieved
in future. / AFRIKAANSE OPSOMMING: Komplekse Laserpuls-vervorming kan gebruik word om verskeie fundamentele laser-geinduseerde prosesse beide te beheer asook te bestudeer. Hierdie navorsingstuk
dien as n inleiding tot Laserpuls-vervorming, spesifiek gefokus op
n eenvoudige Pulsvervormings-eksperiment. Meer komplekse Pulsvervormingsopstellings
kan toegepas word deur die kennis opgedoen in hierdie tesis.
Die teoretiese agtergrond van Laserpuls-vervormings word bespreek, tesame
met n eenvoudige eksperiment om die Tweede Harmoniek Skeppingsproses
(SHG) te maksimeer deur van Laserpuls-vervorming gebruik te maak. Die
eksperiment is teoreties eenvoudig, waar die implimentering asook bedryf meer
kompleks is. Die bedryf van die eksperiment word in 2 dele hanteer: die
hoofprogram en n Genetiese Algoritme gebruik in optimering. Die werking
van Genetiese Algoritmes asook Ultrakort Pulse (USPs) en pulskarakterisering
word ook bespreek.
Die suksesvolle opstelling van die experiment en ook die eind resultate
wat gevind is, maak dit moontlik om meer ingewikkeld komplekse laserpulsvervorming
experimente te bestudeer.
|
12 |
Novel Nonlinear Microscopy Techniques Based on Femtosecond Laser Pulse Shaping and Their ApplicationsLi, Baolei January 2013 (has links)
<p>Nonlinear optical microscopy serves as a great tool for biomedical imaging due to its high resolution, deep penetration, inherent three dimensional optical sectioning capabilities and superior performance in scattering media. Conventional nonlinear optical microscopy techniques, e.g. two photon fluorescence and second harmonic generation, are based on detecting a small light signal emitted at a new wavelength that is well separated from the excitation light. However, there are also many other nonlinear processes, such as two-photon absorption and self-phase modulation, that do not generate light at new wavelengths and that have not been extensively explored for imaging. This dissertation extends the accessible mechanisms for contrast to the later nonlinear optical processes by combining femtosecond laser pulse shaping and homodyne detection. We developed a rapid pulse shaper with a relatively simple and compact instrument design that modifies the spectrum of individual laser pulses from an 80 MHz mode-locked laser. The pulse shaper enables simultaneous two-photon absorption and self-phase modulation imaging of various nanoparticles in-vitro with high sensitivity. We also applied this imaging technique to study the nonlinear optical response in graphene. Because our technology detects the nonlinear signature encoded within the laser pulse itself, we achieve intrinsic contrast of biological and non-biological samples in highly scattering media. These capabilities have significant implications in biomedical imaging and nanophotonics.</p> / Dissertation
|
13 |
Large Two-photon Absorption of Highly Conjugated Porphyrin Arrays and Their in vivo ApplicationsPark, Jong Kang January 2015 (has links)
<p>Two-photon excited fluorescence microscopy (TPM) has become a standard biological imaging tool due to its simplicity and versatility. The fundamental contrast mechanism is derived from fluorescence of intrinsic or extrinsic markers via simultaneous two-photon absorption which provides inherent optical sectioning capabilities. The NIR-II wavelength window (1000–1350 nm), a new biological imaging window, is promising for TPM because tissue components scatter and absorb less at longer wavelengths, resulting in deeper imaging depths and better contrasts, compared to the conventional NIR-I imaging window (700–1000 nm). However, the further enhancement of TPM has been hindered by a lack of good two-photon fluorescent imaging markers in the NIR-II. </p><p>In this dissertation, we design and characterize novel two-photon imaging markers, optimized for NIR-II excitation. More specifically, the work in this dissertation includes the investigation of two-photon excited fluorescence of various highly conjugated porphyrin arrays in the NIR-II excitation window and the utilization of nanoscale polymersomes that disperse these highly conjugated porphyrin arrays in their hydrophobic layer in aqueous environment. The NIR-emissive polymersomes, highly conjugated porphyrins-dispersed polymersomes, possess superb two-photon excited brightness. The synthetic nature of polymersomes enables us to formulate fully biodegradable, non-toxic and surface-functionalized polymersomes of varying diameters, making them a promising and fully customizable multimodal diagnostic nano-structured soft-material for deep tissue imaging at high resolutions. We demonstrated key proof-of-principle experiments using NIR-emissive polymersomes for in vivo two-photon excited fluorescence imaging in mice, allowing visualization of blood vessel structure and identification of localized tumor tissue. In addition to spectroscopic characterization of the two-photon imaging agents and their imaging capabilities/applications, the effect of the laser setup (e.g., repetition rate of the laser, peak intensity, system geometry) on two-photon excited fluorescence measurements is explored to accurately measure two-photon absorption (TPA) cross-sections. A simple pulse train shaping technique is demonstrated to separate pure nonlinear processes from linear background signals, which hinders accurate quantification of TPA cross-sections.</p> / Dissertation
|
14 |
Pulse shaping for broadband photoassociation of cold moleculesFriedman, Melissa E. January 2010 (has links)
The development of the field of the science of ultra-cold matter has opened some exciting possibilities in exploring the quantum-mechanical processes which dominate matter interactions at the sub-microscopic scale. Although methods of cooling atoms are well established, molecular cooling is made difficult by molecules’ additional vibrational and rotational degrees of freedom. It was the goal of the research in this work to approach molecular cooling indirectly, by using broadband shaped-pulse photoassociation for the generation of tightly bound ultracold Rb<sub>2</sub> molecules. The experiments towards this goal conducted by our group included a pumpdecay experiment to observe the generation of ground state singlet or triplet molecules. However, attempts to observe an increase in ground state population have been unsuccessful. A pump-probe study of wavepacket dynamics in the 5s+5p electronic state was conducted in order to determine the appropriate timing for the application of an additional pulse to dump population into the ground state. Although the attempt to observe wavepacket oscillations has been unsuccessful, pump-probe studies have yielded the observation of loosely bound excited state molecules as a result of the photoassociation pulse. These results are promising as a first stage in a fully coherent pump-dump approach to stabilisation into the lowest vibrational ground state. This thesis will provide an introduction and overview to the concerns involved in addressing the problem of molecular cooling and generation. Experimental techniques will be discussed including pulsed laser systems, optical parametric amplifi- cation, and the presentation of an original design for pulse shaping with an acoustooptic modulator. The emphasis of these discussions will be on the principles and operating procedures required for the use of these devices as home-built systems. The thesis will conclude with the results of pump-probe experiments utilising the pulse shaper as a spectral cutting device.
|
15 |
Geração de segundo harmônico sintonizável por modulação de fase de pulsos de laser ultracurtos / Tunable second harmonic generation by phase-modulated ultrashort laser pulsesOliveira, Anderson Roberto de 15 February 2012 (has links)
Neste trabalho é feito um estudo da formatação de pulsos ultracurtos de laser de Ti:Safira para a geração de segundo harmônico em cristal de KDP. Para a formatação dos pulsos, é utilizado um aparato que inclui um modulador espacial de luz de cristal líquido (LC SLM), que altera unicamente a fase espectral dos pulsos. Este aparelho tem a vantagem de não introduzir perdas durante a propagação da luz, além de sua ação ser controlada via computador, através de um software em LabVIEW. Utilizando uma função senoidal, é feito um estudo das limitações do controle da geração do segundo harmônico provindas da pixelação do LC SLM, isto é, do fato de que os elementos moduladores possuem tamanhos finitos e produzem uma modulação discreta ao longo das componentes espectrais do pulso. É apresentada a geração de luz sintonizável em torno de 400 nm por duplicação de frequências de pulsos cuja fase espectral é modulada por uma soma de funções senoidais de frequências diferentes. A largura de banda do ultravioleta produzido é da ordem de 1 nm, em contraste com a largura de linha de cerca de 12 nm do segundo harmônico gerado na ausência de modulação do pulso fundamental. A sintonização é feita basicamente através de uma varredura na fase das funções moduladoras do pulso fundamental. Esse tipo de sintonização nessa região do espectro possui algumas aplicações, tais como a microscopia seletiva por dois fótons ou mesmo a espectroscopia de um fóton. Para comprovar a utilidade da geração de segundo harmônico sintonizável, é apresentada uma medida espectroscópica da transmissão em uma amostra de cloreto de európio, sendo que os resultados obtidos concordaram com as medidas da mesma amostra realizadas em um espectrofotômetro, com o mínimo de transmissão em cerca de 394 nm. / This work presents a study on the shaping of ultrashort pulses of a Ti:Sapphire laser for second harmonic generation in KDP crystals. To achieve the pulse shaping, a setup based on a phase-only crystal-based spatial light modulator (LC SLM) is used. This device has the advantage of low loss, and can be computer controlled, by means of a LabVIEW software. The use of a sinusoidal function, allows to study the limitations of the second harmonic generation due to the pixelation of the LC SLM, i. e., due to the fact that the modulating elements have finite sizes and produce a stepwise modulation along the spectral components of the pulse. The generation of tunable light around 400 nm by frequency doubling of laser pulses is presented for the case where the spectral phase is modulated by a sum of sinusoidal functions with different frequencies. The linewidth of the ultraviolet band produced is narrower than 1 nm, in contrast to the 12 nm linewidth of the non-modulated incident spectrum. The tuning is done primarily through a sweep in the phase of the modulating functions of the fundamental pulse. The possibility of tuning in this region of the spectrum has a few applications, such as in selective two-photon microscopy or even in one photon spectroscopy. To demonstrate the usefulness of tunable second harmonic generation, a spectroscopic measurement of the transmission in a sample of europium chloride is presented, and the results agreed with the measures of those performed in a spectrophotometer, with the minimal transmission occurring around 394 nm.
|
16 |
Development and Characterization of a Regeneratively Amplified Ultrafast Laser System with an All-Glass Stretcher and CompressorWalker, Stephen January 2006 (has links)
High-peak power laser systems are defined along with a brief introduction of the technology used in their development and application to the project. A review of concepts surrounding optical pulses, focusing on the particular phenomena involved with the ultrafast, follows. Numerical models involving optical pulses are introduced and verified. An extensive description of the laser system is presented, including models used in its design. Data verifying the correct operation of the laser system is presented and interpreted. A dispersion compensation system, including a function model, is introduced, and its application to the laser system is analyzed. An introduction to pulse characterization techniques is presented followed by the design and verification of two different characterization devices. Experiments utlizing the dispersion compensation system and pulse characterization devices are presented and the results are interpreted. Conclusions are made regarding the performance of the laser system models and pulse characterization devices, along with suggested improvements for each. The results of the experiments are discussed including suggestions for future work.
|
17 |
Development and Characterization of a Regeneratively Amplified Ultrafast Laser System with an All-Glass Stretcher and CompressorWalker, Stephen January 2006 (has links)
High-peak power laser systems are defined along with a brief introduction of the technology used in their development and application to the project. A review of concepts surrounding optical pulses, focusing on the particular phenomena involved with the ultrafast, follows. Numerical models involving optical pulses are introduced and verified. An extensive description of the laser system is presented, including models used in its design. Data verifying the correct operation of the laser system is presented and interpreted. A dispersion compensation system, including a function model, is introduced, and its application to the laser system is analyzed. An introduction to pulse characterization techniques is presented followed by the design and verification of two different characterization devices. Experiments utlizing the dispersion compensation system and pulse characterization devices are presented and the results are interpreted. Conclusions are made regarding the performance of the laser system models and pulse characterization devices, along with suggested improvements for each. The results of the experiments are discussed including suggestions for future work.
|
18 |
Study on Peak-to-Average Power Ratio of OFDM SystemsHung, Kuen-Ming 05 September 2004 (has links)
In recent years, the development of OFDM system has received a lot of attention. Some examples of existing systems where OFDM system is used are digital audio broadcasting, high-definition television terrestrial broadcasting, asymmetric digital subcarrier lines and so on. There are several reasons for using OFDM systems. First, OFDM system is an efficient way to deal with multipath effect. Under a fixed amount of delay spread, the implementation complexity of OFDM system is much less than that of single-carrier system. The reason is that OFDM system can simply use guard time to process delay spread without a complex equalizer. Second, OFDM system can achieve high data rate to transmit by using large number of subcarriers. Third, OFDM system can also efficiently combat with narrow band interference. On the other hand, OFDM system also has two main drawbacks. One is more sensitive to frequency offset, the other is higher PAPR.
This thesis focuses on the PAPR problem. Pulse shaping method is an effective way to solve this problem. It can be used for any number of subcarriers of OFDM systems, so it is very flexible. It doesn¡¦t have any additional IFFTs in comparison to the selected mapping or partial transmit sequence method. Its implementation is simpler. And because it also doesn¡¦t distort the OFDM symbols, its bit error performance should be better than the clipping method. According to the pulse shaping method, we get a better waveform that can make the PAPR of OFDM symbols do not exceed about 2.
|
19 |
Ultrafast Quantum Control of Exciton Dynamics in Semiconductor Quantum DotsGamouras, Angela 23 September 2013 (has links)
Controlling the quantum states of charge (excitons) or spin-polarized carriers in semiconductor quantum dots (QDs) has been the focus of a considerable research effort in recent years due to the strong promise of using this approach to develop solid state quantum computing hardware. The long-term scalability of this type of quantum computing architecture is enhanced by the use of QDs emitting in the telecom band, which would exploit the established photonic infrastructure. This thesis reports the use of all optical infrared experimental techniques to control exciton dynamics in two different QD samples consisting of InAs/GaAs QDs and InAs/InP QDs within a planar microcavity. An infrared quantum control apparatus was developed and used to apply optimized shaping masks to ultrafast pulses from an optical parametric oscillator. Pulse shaping protocols designed to execute a two-qubit controlled-rotation operation on an individual semiconductor QD were demonstrated and characterized. The quantum control apparatus was then implemented in simultaneous single qubit rotations using two uncoupled, distant InAs/GaAs QDs. These optimal control experiments demonstrated high fidelity optical manipulation of exciton states in the two QDs using a single broadband laser pulse, representing a step forward on the path to a scalable QD architecture and showcasing the power of pulse shaping techniques for quantum control on solid state qubits. As an alternative to single QDs, which have very low optical signals, subsets of QDs within an ensemble can be used in quantum computing applications. To investigate the mediation of inhomogeneities in a QD ensemble, pump-probe experiments were performed on InAs/InP QDs within a dielectric Bragg stack microcavity. Two different excitation geometries showed that the angle dependence of the microcavity transmission allowed for the spectral selection of QD subsets with transition energies resonant with the cavity mode. The microcavity mitigated inhomogeneities in the ensemble while providing a basis for addressing QD subsets which could be used as distinguishable quantum bits. This thesis work shows significant advances towards an optical computing architecture using quantum states in semiconductor QDs.
|
20 |
Didelės galios pikosekundinis Nd:YAG lazeris čirpuotų impulsų parametrinių stiprintuvų kaupinimui / High power Nd:YAG laser for pumping of OPCPA systemsAdamonis, Jonas 25 September 2013 (has links)
Disertacija yra skirta sukurti, ištirti ir optimizuoti didelės galios Nd: YAG lazerių sistemą efektyviam moduliuotos fazės signalų optinių parametrinių stiprintuvų kaupinimui. Ypatingas dėmesys yra skiriamas Nd:YAG stiprintuvų išvadinių impulsų laikinių parametrų formavimui. Pademonstravome, kad Fabry-Pero interferometrų panaudojimas Nd:YAG dvipakopio regeneracinio stiprintuvo rezonatoriuose leidžia stiprinamų impulsų trukmę padidinti nuo ~ 60 fs iki 100 ps. Tuo tarpu išvadinių impulsų laikinės plėtros mastas bei gaubtinės moduliacijos gylis gali būti valdomas keičiant etalonų atspindžio koeficientą, o jų gaubtinės moduliacijos vertė mažiausia, kai etalonų storio santykis artimas 2. Sustiprintų impulsų kontrasto gerinimui pirmą kartą pritaikėme netiesinį antros eilės filtrą, veikiantį fundamentinės spinduliuotės poliarizacijos sukimo, išderintame antros harmonikos generatoriuje, efekto pagrindu. Tokiu būdu Nd:YAG stiprintuvuose sustiprintų impulsų kontrasto vertė pagerinta apie 102 kartų. Taip pat pademonstruota, kad Nd: YAG stiprinimo sistemos išėjime naudojant pakopinius antros harmonikos generacijos procesus, Gauso formos impulsus galima transformuoti į hipergauso impulsus. Sukurta didelės išvadinės energijos pikosekundinė Nd:YAG stiprintuvų sistema yra optiškai sinchronizuota su užduodančio femtosekundinio Yb:KGW osciliatoriaus impulsais ir turi ~ 300 mJ , 75 ps trukmės Gauso impulsų bei 100 mJ, > 100 ps trukmės hipergauso laikinės formos impulsų išvadus. / This thesis was aimed to develop, investigate and optimize high power Nd:YAG laser system for OPCPA (Optical Parametric Chirped Pulse Amplifiers) pump. The particular attention is paid for the temporal characteristics of the Nd:YAG amplifies output pulse. Employment of Fabry-Perоt etalons in the cavities of two-stage Nd:YAG regenerative amplifier enables for amplified pulse stretching from 60 fs to ~ 100 ps pulse widths. The modulation of amplified pulse envelope is minimal when ration of thickness of the etalons is around 2. Envelope modulation can be controlled by changing the reflectivity of etalons. In order to improve amplified pulse contrast, we for the first time to our knowledge implemented second order intensity dependent filter, based on the effect of fundamental pulse polarization rotation in unbalanced second harmonic generators. By using this method, the contrast of the output pulses was improved by >102 times. We also demonstrated that Gaussian pulses from the output of Nd: YAG amplifiers can be transformed into flat–top pulses by using cascade second harmonic generation processes. The developed high output energy Nd:YAG amplifiers system for OPCPA pumping is optically synchronized with pulses of Yb:KGW oscillator and features two 532 nm outputs with pulse parameters: a) Gaussian pulse profile, ~ 300 mJ energy, 75 ps pulsewidth; b) hiper- Gaussian pulse profile, ~100 mJ energy, pulse width 100-150 ps.
|
Page generated in 0.047 seconds