• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design Evaluation of a Duplex Circular Wet Well Pumping Station Under Steady State and Dynamic Operating Conditions

Mailloux, James Thomas 29 April 2010 (has links)
Duplex Circular Wet Well (DCWW) lifting pump stations are utilized for pumping clear and solid-bearing liquid. Understanding the effect of design criteria on pump performance is important to minimize maintenance costs and maximize efficiency. There are currently no known full-scale laboratory studies that have been performed to investigate the overall design of DCWWs. The objective of the research was to evaluate the impact of various design criteria, such as internal geometry and operating conditions on the performance of DCWW pump stations and provide documentation and recommendations which will be used to augment the current Hydraulic Institute/American National Standard for Pump Intake Design (ANSI/HI 9.8-1998), (HI) guidelines. The research was conducted in two phases; Phase 1 consisted of performing a comparative analysis of the basic flow patterns within the wet well by means of Computational Fluid Dynamics (CFD), Phase 2 consisted of performing detailed evaluations of various design aspects on pump performance using a full-scale Physical Model constructed for the research. The CFD research provided indications regarding potential performance problems that may occur due to poor flow patterns and potential pump suction swirl, while the physical research provided a basis for determining the relative advantages of different designs. The physical research included the evaluation of general flow patterns, free-surface and subsurface vortices, air entrainment and pump suction swirl. Measurement of the steady state swirl within the pump showed unacceptable performance in accordance with the HI acceptance criteria. Swirl data collected under real-world dynamic operating conditions showed that the pump typically did not experience the adverse conditions indicated at steady state. Normal (symmetrical) pump orientation resulted in more favorable operation in terms of pump swirl and ingestion of entrained air than a coplanar (inline) condition. A minimum water elevation was established to minimize air-entrainment and swirl entering the pumps, reducing possible effects such as cavitation and vibration of the pump impeller. Air-core subsurface vortices were present under the pumps, requiring pump-cones to be installed. The collection of real-time dynamic data will allow design engineers to better understand actual pump performance under normal cycling and clean-out modes, reducing the operating time under unfavorable conditions and overall maintenance requirements.
2

Water Hammer: An Analysis of Plumbing Systems, Intrusion, and Pump Operation

Batterton, Shawn Henry 13 December 2006 (has links)
This thesis provides a comprehensive look at water hammer with an emphasis on home plumbing systems. The mathematics of water hammer are explained, including the momentum and continuity equations for conduits, system construction, and the four-point implicit finite difference scheme to numerically solve the problem. This paper also shows how the unsteady momentum and continuity equations can be used to solve water distribution problems instead of the steady-state energy and continuity equations, along with the examples problems which show that an unsteady approach is more suitable than the standard Hardy-Cross method. Residential plumbing systems are examined in this paper, household fixtures are modeled for their hydraulic functions, and several water hammer simulations are run using the Water Hammer and Mass Oscillation program (WHAMO). It is determined from these simulations that the amount of air volume in the system is a key factor in controlling water hammer. Abnormal pump operation is clearly explained including a description of the four quadrants and eight zones of operation as well as the mathematics and a numerical scheme for computation. Low pressures caused by transients can lead to intrusion and contamination of the drinking water supply. Several scenarios are simulated using the WHAMO program and cases are provided in which intrusion occurs. From the intrusion scenarios, key factors for intrusion to occur during transients include the starting energy in the system, the magnitude of the transient, the hydraulics of the intrusion opening, and the external energy on the pipe (the level of the groundwater table). A primer for using WHAMO is provided as an appendix as well. / Master of Science
3

Mathematical modelling of the plunger pump operation with numerical methods for simulating the flow across the valve

Chen, Tian 01 December 2011 (has links)
Plunger pumps are needed for heavy duty sludge pumping at wastewater treatment facilities. America's leading pump manufacturer Wastecorp Inc. brought their plunger pump problem to us in late 2009. It was found that when the ow rate reaches a critical value, the plunger pump starts to generate a clicking noise. A one-dimensional model was built for studying the ow of a typical plunger pump operation. The velocities and pressures are calculated at certain interesting locations. Pressure jumps have been found while opening or closing the valves. The valve motion is then modeled with considerations to its geometry. The results show that as the plunger speed reaches a critical value, the valve moves more rapidly and more likely to hit the wall and generates a noise. We also provide a methodology to study the ow across the valve in higher resolution. A nite-di erence approach to the Navier-Stokes equations are presented with the immersed boundary method. / UOIT
4

Modeling of Pipeline Transients: Modified Method of Characteristics

Wood, Stephen L 08 July 2011 (has links)
The primary purpose of this research was to improve the accuracy and robustness of pipeline transient modeling. An algorithm was developed to model the transient flow in closed tubes for thin walled pipelines. Emphasis was given to the application of this type of flow to pipelines with small radius 90° elbows. An additional loss term was developed to account for the presence of 90° elbows in a pipeline. The algorithm was integrated into an optimization routine to fit results from the improved model to experimental data. A web based interface was developed to facilitate the pre- and post- processing operations. Results showed that including a loss term that represents the effects of 90° elbows in the Method of Characteristics (MOC) [1] improves the accuracy of the predicted transients by an order of magnitude. Secondary objectives of pump optimization, blockage detection and removal were investigated with promising results.

Page generated in 0.1162 seconds