• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A comparison of field performance with design characteristics of deep well centrifugal turbine pumps

Matlock, William Gerald, 1929- January 1960 (has links)
No description available.
2

Analysis of factors influencing the performance of a hydrokinetic coil pump

Opperman, Adriaan Jacobus January 2013 (has links)
A hydrokinetic coil pump (HCP) is described by its name. It is a coil pump driven by the kinetic energy in flowing water. The hydrokinetic energy is converted into mechanical energy by means of a paddle-wheel. The coil pump makes up part of the paddle-wheel and together is called a HCP. The HCP floats in a stream of flowing water while tethered to the bank. The focus of the study was to identify and analyse the factors influencing the HCP. The HCP was then optimized for rural application. Data acquisition took place through experimentation on a full scale experimental platform according to a central composite experimental design. Variables used for the experimentation included; Stream Velocity, Delivery Head, Number of Coils, Discharge, Number of Paddles, Paddle-Wheel rotational speed Overall HCP efficiencies of up to 22 percent were obtained. The efficiency would drop as the stream velocity increased. Stream velocity has been identified as the most influential factor with regards to the variables analysed by this study. The HCP is ideal for rural application. The simplicity of the design ensures reliability as well as an effective water supply solution. The HCP is ideal for slow flowing rivers and can deliver up to 1190ℓ/h to a delivery head of 5m with a stream velocity of 1.2m/s. This is sufficient to supply a small rural community with running water.

Page generated in 0.094 seconds