• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lipid binding proteins from wheat : isolation, characterisation and functional importance

Leonard, Steven A. January 2000 (has links)
No description available.
2

Thermal properties of starch from transgenic isolines of wheat differing in starch surface components

Nath de Oliveira, Daniela January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Jon M. Faubion / Endosperm texture is an important characteristic in determining wheat processing and end-use. The presence of puroindoline proteins on the starch surface is the biochemical marker for wheat hardness. Near-isogenic samples over expressing puroindolines have been used to assess the effect of wheat hardness on final product characteristics. The objective of this study was to determine differences among starch isolated from near-isogenic samples and to investigate the role starch surface components play in pasting. The use of near-isogenic samples over expressing puroindolines combined with the use of two methods of starch isolation (batter and dough) was an effective means to create samples with varied amounts of surface components. Starch thermal properties were characterized and surface proteins and lipids were quantified. Starch isolated from hard wheat cultivars presented more similarities with starch isolated from its soft near-isogenic line when a dough method was used than when a batter method was used. Starch from soft experimental lines isolated using a batter method showed increased MVA peak viscosity, breakdown and swelling power. Increased levels of LysoPC in starch isolated from hard wheat cultivars or soft experimental lines by dough method could have complexed with amylose and restricted granule swelling. Thereby, decreasing peak viscosity, breakdown and swelling power.
3

Wheat polar lipids: sources of variation among near-isogenic wheat lines with different endosperm hardness

Finnie, Sean McIlwain January 1900 (has links)
Doctor of Philosophy / Department of Grain Science and Industry / Jon M. Faubion / Starch granule surface components were studied as a function of puroindoline haplotype, starch isolation method, and processing fraction. Commonly grown cultivars and near-isogenic wheat lines that varied in their wheat endosperm hardness were collected. Wheat whole-meal, flour and starch were evaluated for their polar lipid composition. Water-washed starch was isolated using a modified batter method and a dough method. Direct infusion tandem mass spectrometry was used to identify the lipid species in the extracts. A total of 155 polar lipid species in wheat meal, flour and starch were quantitatively characterized. The predominant polar lipid classes were digalactosyldiglycerides, monogalactosyldiglycerides, phosphatidylcholine, and lysophosphatidylcholine. Wheat whole-meal, flour and surface-starch contained greater concentrations of total galactolipids while internal-starch lipids contained greater concentrations of monoacyl phospholipids. Wide ranges in starch surface polar lipid concentrations were observed between the two starch isolation methods. Starch isolation methods provided a greater source of variation than did wheat kernel hardness. When dough is optimally mixed the lipids originally on the surface of wheat starch become incorporated into the gluten phase of the dough, whereas in a batter system the starch-surface lipids stay associated with the starch granule surface. The greatest quantities of polar lipids on the starch surface occurred when both puroindoline proteins were present on starch in their wild-type form. Starch surface polar lipid content decreased dramatically when one of the puroindoline proteins was null, or if the puroindoline-b (pin-b) was in the mutated form (Tryptophan-44 to Arginine). Within the hard textured samples, more polar lipids were present on the starch surface when pin-b was in its wild-type form and puroindoline-a (pin-a) was null than when pin-a was in its wild-type form and pin-b was null. The lowest amount of polar lipids were present when pin-b was mutated (Tryptophan-44 to Arginine) and pin-a was in its wild-type form. This indicates the relative importance of pin-b’s presence and structure as it relates to lipid association with the starch granule surface.
4

Pointillism in Plant Systems Biology: I. Proteomic Analysis of Plant Exosome-like Particles II. Amyloplast-binding Puroindoline Fusion Proteins for Recombinant Protein Expression.

Greenham, Trevor 24 September 2019 (has links)
Expanding upon our understanding of plant defense is critical, particularly with the perilous threats of climate change and overpopulation to our food security, health and well-being. In this study, we focused on plant defense using two distinct approaches. First, we performed a proteomic analysis of plant exosome-like nanoparticles in order to elucidate their defense related protein cargo. Secondly, we used a wheat antimicrobial protein, puroindoline, as a fusion partner for the expression of recombinant proteins in rice endosperm. Plant exosome-like nanoparticles (ELP) were isolated from fresh tomato and subjected to mass spectrometry (MS) analysis. The ELPs were compared to fresh pressed tomato juice, and the proteins that were significantly upregulated in the ELPs were analyzed for their defensive properties. Bioinformatic analysis identified 30 proteins upregulated in the ELPs, with a majority of these being involved in plant defense. Puroindoline is a protein found in soft wheat varieties. A unique feature of this protein is the presence of a tryptophan-rich domain, which causes it to localize and tether onto starch granule surfaces; a property we are seeking to exploit for recombinant protein isolation. We hypothesized that when expressed in a pin-null crop, such as rice, puroindoline along with its fusion partner will localize and adhere to starch granule surfaces. PIN fusions were expressed in rice, and their subcellular localization was determined by immunolocalization. It was observed that PIN localizes to rice starch ii granules in vitro and in planta, and retains its starch granule binding abilities as a fusion partner. To identify other possible starch granule binding fusion partners, an anhydrous cleavage method was developed that can scan dry biological materials for associated proteins, in this case the starch granule surface. Incubation of our cleavage reagent with isolated rice starch granules yielded several cleavage products as determined through SDS-PAGE. These cleavage products were compared with previous proteomic data of trypsin digested rice starch granules.
5

The Starch Granule Surface: Technological and Biological Implications of Puroindoline and Host-pathogen Interactions

Wall, Michael L. 02 February 2011 (has links)
The sun is the primary source of all chemical energy on the planet. Starch granules have evolved as storage deposits for captured light energy. Many complex biological functions take place at the starch granule surface, including starch granule metabolism and defense. The starch granule-associated protein puroindoline is a known antimicrobial with unique functional and biological properties, attributed to the presence of a unique tryptophan-rich domain. To test puroindoline's tight association, puroindoline removed from the starch granule surface during water-washing was assessed. Washing more than eight times failed to further reduce puroindoline content of starch granules, suggesting a strong association of puroindoline with the starch granule surface. To identify the tryptophan-rich domain tightly associated with the starch granule surface, we used a combination of in situ tryptic digestion and mass spectrometry. We identified the tryptophan-rich domain of puroindoline directly bound to the starch granule surface of wheat. This is the first instance of the tryptophan-rich domain directly observed at the starch granule surface. In addition, using mass spectrometry, we determined that during development and maturation, wheat seeds appear to have resisted infection and lysed the pathogens where, upon desiccation, the molecular evidence remained fixed at the starch granule surface. Proteins with known antimicrobial activity were identified, as well as several proteins from the plant pathogens Agrobacterium tumefaciens, Pectobacterium carotovorum, Fusarium graminearum, Magnaporthe grisea, Xanthomonas axonopodis, and X. oryzae. Future characterization may reveal previously unknown host-pathogen interactions. Finally, we have demonstrated that puroindoline, when expressed in the seeds of transgenic corn, will localize and associate with the starch granule surface in a pattern similar to the puroindoline expression pattern observed in wheat. Surprisingly, puroindoline expression in transgenic corn is correlated with an increase in total seed oil content.
6

The Starch Granule Surface: Technological and Biological Implications of Puroindoline and Host-pathogen Interactions

Wall, Michael L. 02 February 2011 (has links)
The sun is the primary source of all chemical energy on the planet. Starch granules have evolved as storage deposits for captured light energy. Many complex biological functions take place at the starch granule surface, including starch granule metabolism and defense. The starch granule-associated protein puroindoline is a known antimicrobial with unique functional and biological properties, attributed to the presence of a unique tryptophan-rich domain. To test puroindoline's tight association, puroindoline removed from the starch granule surface during water-washing was assessed. Washing more than eight times failed to further reduce puroindoline content of starch granules, suggesting a strong association of puroindoline with the starch granule surface. To identify the tryptophan-rich domain tightly associated with the starch granule surface, we used a combination of in situ tryptic digestion and mass spectrometry. We identified the tryptophan-rich domain of puroindoline directly bound to the starch granule surface of wheat. This is the first instance of the tryptophan-rich domain directly observed at the starch granule surface. In addition, using mass spectrometry, we determined that during development and maturation, wheat seeds appear to have resisted infection and lysed the pathogens where, upon desiccation, the molecular evidence remained fixed at the starch granule surface. Proteins with known antimicrobial activity were identified, as well as several proteins from the plant pathogens Agrobacterium tumefaciens, Pectobacterium carotovorum, Fusarium graminearum, Magnaporthe grisea, Xanthomonas axonopodis, and X. oryzae. Future characterization may reveal previously unknown host-pathogen interactions. Finally, we have demonstrated that puroindoline, when expressed in the seeds of transgenic corn, will localize and associate with the starch granule surface in a pattern similar to the puroindoline expression pattern observed in wheat. Surprisingly, puroindoline expression in transgenic corn is correlated with an increase in total seed oil content.
7

The Starch Granule Surface: Technological and Biological Implications of Puroindoline and Host-pathogen Interactions

Wall, Michael L. 02 February 2011 (has links)
The sun is the primary source of all chemical energy on the planet. Starch granules have evolved as storage deposits for captured light energy. Many complex biological functions take place at the starch granule surface, including starch granule metabolism and defense. The starch granule-associated protein puroindoline is a known antimicrobial with unique functional and biological properties, attributed to the presence of a unique tryptophan-rich domain. To test puroindoline's tight association, puroindoline removed from the starch granule surface during water-washing was assessed. Washing more than eight times failed to further reduce puroindoline content of starch granules, suggesting a strong association of puroindoline with the starch granule surface. To identify the tryptophan-rich domain tightly associated with the starch granule surface, we used a combination of in situ tryptic digestion and mass spectrometry. We identified the tryptophan-rich domain of puroindoline directly bound to the starch granule surface of wheat. This is the first instance of the tryptophan-rich domain directly observed at the starch granule surface. In addition, using mass spectrometry, we determined that during development and maturation, wheat seeds appear to have resisted infection and lysed the pathogens where, upon desiccation, the molecular evidence remained fixed at the starch granule surface. Proteins with known antimicrobial activity were identified, as well as several proteins from the plant pathogens Agrobacterium tumefaciens, Pectobacterium carotovorum, Fusarium graminearum, Magnaporthe grisea, Xanthomonas axonopodis, and X. oryzae. Future characterization may reveal previously unknown host-pathogen interactions. Finally, we have demonstrated that puroindoline, when expressed in the seeds of transgenic corn, will localize and associate with the starch granule surface in a pattern similar to the puroindoline expression pattern observed in wheat. Surprisingly, puroindoline expression in transgenic corn is correlated with an increase in total seed oil content.
8

The Starch Granule Surface: Technological and Biological Implications of Puroindoline and Host-pathogen Interactions

Wall, Michael L. January 2011 (has links)
The sun is the primary source of all chemical energy on the planet. Starch granules have evolved as storage deposits for captured light energy. Many complex biological functions take place at the starch granule surface, including starch granule metabolism and defense. The starch granule-associated protein puroindoline is a known antimicrobial with unique functional and biological properties, attributed to the presence of a unique tryptophan-rich domain. To test puroindoline's tight association, puroindoline removed from the starch granule surface during water-washing was assessed. Washing more than eight times failed to further reduce puroindoline content of starch granules, suggesting a strong association of puroindoline with the starch granule surface. To identify the tryptophan-rich domain tightly associated with the starch granule surface, we used a combination of in situ tryptic digestion and mass spectrometry. We identified the tryptophan-rich domain of puroindoline directly bound to the starch granule surface of wheat. This is the first instance of the tryptophan-rich domain directly observed at the starch granule surface. In addition, using mass spectrometry, we determined that during development and maturation, wheat seeds appear to have resisted infection and lysed the pathogens where, upon desiccation, the molecular evidence remained fixed at the starch granule surface. Proteins with known antimicrobial activity were identified, as well as several proteins from the plant pathogens Agrobacterium tumefaciens, Pectobacterium carotovorum, Fusarium graminearum, Magnaporthe grisea, Xanthomonas axonopodis, and X. oryzae. Future characterization may reveal previously unknown host-pathogen interactions. Finally, we have demonstrated that puroindoline, when expressed in the seeds of transgenic corn, will localize and associate with the starch granule surface in a pattern similar to the puroindoline expression pattern observed in wheat. Surprisingly, puroindoline expression in transgenic corn is correlated with an increase in total seed oil content.

Page generated in 0.0575 seconds