Spelling suggestions: "subject:"laspropiedades mecánica"" "subject:"multiapropiedades mecánica""
1 |
Comparación de las propiedades mecánicas de unidades y prismas de bloques de tierra comprimida estabilizada con cemento y geopolímero de puzolanaAlvarez Ordoñez, Syndy Yesenia 08 February 2019 (has links)
El interés y la necesidad de los países en desarrollo en el uso de la tierra como material de
construcción ha fomentado el estudio continuo de sistemas de construcción más resistentes,
económicos y sostenibles. Una de las tecnologías más conocidas es la construcción industrial con
Bloques de Tierra Comprimida (BTC) que beneficia esencialmente a las regiones con bajo desarrollo
económico. Los BTC son unidades de albañilería con geometría y propiedades físicas y mecánicas
homogéneas. Los BTC son fabricados en base a tierra con determinadas características
granulométricas, la cual es compactada dentro del molde de una máquina con forma definida. La
evolución en la fabricación de BTC permite que el proceso sea más rápido, sencillo y automatizado.
Uno de los avances más útiles en las máquinas de fabricación de BTC es la incorporación de un
sistema hidráulico para compactar el suelo, lo cual evita la compactación manual que solía ser el
proceso convencional. En la actualidad, existen máquinas que producen BTC de diversas formas y
tamaños para su uso en mampostería. En la presente investigación, la forma del BTC consiste en un
prisma rectangular con un sistema de interconexión de 10 mm que se encuentra en las superficies
superior e inferior del bloque. El sistema de interconexión permite el enganche de los BTC y provee
resistencia al corte a la mampostería. Además, posee dos agujeros de 90 mm cada uno que atraviesan
el cuerpo del BTC, los cuales reducen la masa sísmica y permiten la colocación de refuerzo
vertical.
La tierra utilizada para la fabricación de BTC es sometida a un proceso de estabilización. La
estabilización química de suelos para la fabricación de BTC ha sido foco de atención de diversos
investigadores que buscan mejorar sus propiedades mecánicas de forma económica y ecosostenible. Uno
de los métodos más conocidos es la estabilización química con cemento. Sin embargo, el cemento
produce un impacto ambiental negativo durante su ciclo de vida. La presente investigación incluyó
el uso de un geopolímero de puzolana, con lo cual se estudia un material de construcción que no
solo genere menos cantidad de CO2 en su producción, sino que también posea propiedades mecánicas
adecuadas para la construcción de viviendas económicas. El objetivo del estudio es comparar las
propiedades mecánicas de las unidades y prismas de BTC estabilizados con cemento y geopolímero de
puzolana teniendo como línea base de comparación al BTC convencional fabricado sin
agente
estabilizante.
El estudio comienza con el estado del arte de la construcción con tierra y de BTC. Posteriormente,
se presenta el protocolo de los ensayos ejecutados durante de la campaña experimental. A
continuación, se desarrolla la campaña experimental dividido en tres partes:
i) proceso de producción y caracterización mecánica de BTC, ii) proceso de producción y
caracterización mecánica de BTC estabilizada y iii) caracterización mecánica del sistema de
mampostería de BTC de junta seca. Finalmente, el análisis comparativo del estudio se lleva a cabo
en base a los resultados obtenidos de la caracterización mecánica de las unidades y prismas de BTC,
BTC estabilizada con cemento y BTC estabilizada con geopolímero de puzolana.
El suelo base analizado proveniente del distrito de Ventanilla, Callao, fue mejorado con arena
gruesa con la finalidad de que la curva granulométrica del suelo mejorado se encuentre dentro del
huso granulométrico indicado en la norma UNE 41410 (2008). El proceso de estabilización química del
suelo permitió conocer que el contenido óptimo de cemento es de 8% y de geopolímero de puzolana de
15%. El porcentaje óptimo de agente estabilizante óptimo cumple con la resistencia a la
compresión mínima requerida por la norma UNE 41410 (2008) que es de 1.3 MPa para ambos casos.
Los resultados de la caracterización mecánica de BTC y BTC estabilizada se realizó en términos de
la compresión y flexión. Se obtuvieron resistencias a la compresión a los 28 días de edad de 1.3
MPa (CV 6.2%), 3.6 MPa (CV 17.9%) y 2.4 MPa (CV <1%) para BTC, BTC
estabilizada con 8% de cemento y BTC estabilizada con 15% de geopolímero de puzolana
respectivamente. La resistencia a la compresión en estado saturado del BTC estabilizada con 8% de
cemento bajó en 52% respecto a su resistencia a los 28 días de edad y en un 66% en el caso del BTC
estabilizada con 15% de geopolímero de puzolana. Además, se obtuvo el módulo de elasticidad (E) de
cada tipo de BTC: 88.2 MPa (CV 2%), 249.9 MPa (CV 3%) y
208.5 MPa (CV 3%) para el BTC, BTC estabilizada con 8% de cemento y BTC estabilizada con 15% de
geopolímero de puzolana respectivamente. Finalmente, se obtuvo la resistencia a la flexión, que
resultó 0.1 MPa (CV <1%), 0.7 MPa (CV 24.8%) y 0.2 MPa (CV 23.2%) correspondiente a los
BTC, BTC estabilizada con 8% y BTC estabilizada con 15% de geopolímero de puzolana respectivamente.
La caracterización de la mampostería de BTC de junta seca mediante el ensayo de
compresión uniaxial dio como resultado resistencias a la compresión de 0.40 MPa
(CV <1%), 1.44 MPa (CV 4%) y 0.75 MPa (CV 9%) para prismas de BTC, BTC estabilizada
con 8% de cemento y BTC estabilizada con 15% de geopolímero de puzolana
respectivamente. Se obtuvieron, además, el módulo de elasticidad (E), el módulo de Poisson
(υ) y el módulo de corte (G) en cada caso. / Tesis
|
2 |
Geopolímeros en la industria de la construcción: aplicaciones con ceniza volante y puzolana naturalSalirrosas Tanta, Jorge Anderson 06 October 2020 (has links)
El incremento en la demanda de materiales de construcción y su producción desmesurada ocasiona un aumento en la generación de contaminantes. Por tal motivo, para reducir estas emisiones se realizan estudios e investigaciones de materiales alternativos que ocasionen menos contaminación. La presente tesis aborda el tema de desarrollo de los geopolímeros como una alternativa al cemento ordinario Portland. Para cumplir con el tema, se inició con una revisión de los conceptos generales de los geopolímeros: A qué se le denomina geopolímero y cuál es su proceso de producción, el material precursor y el agente activador en la producción y cómo están compuestos, y una descripción de los precursores empleados en la investigación. Luego de la revisión bibliográfica, la investigación se separa en dos partes definidas por el material precursor utilizado en la producción del geopolímero: Ceniza volante y puzolana natural. La primera parte consistió en la caracterización del geopolímero a base de ceniza volante para entender la producción de los geopolímeros. La caracterización consistió en obtener la dosificación con la cual se obtiene la mayor resistencia a compresión posible. La dosificación resultante fue MS=1.00, Na2O=8%, w/b=0.26 y curado a 80°C durante 7 días, con lo que se obtiene una resistencia a compresión igual a 34.01 MPa. La segunda parte consistió en el desarrollo de un bloque de construcción utilizando un mortero de geopolímero ligero en base a puzolana natural y fibra natural. El bloque obtenido alcanzó una resistencia de 5.3 y 5.7 MPa a 7 y 28 días, respectivamente. Adicionalmente, se realizó ensayos de durabilidad bajo condiciones agresivas, estos ensayos mostraron un buen comportamiento de los bloques frente a la acción del fuego, altas temperaturas y agua. El estudio realizado demuestra la factibilidad de emplear los geopolímeros en la construcción.
|
3 |
Desarrollo de bloques de construcción ligeros mediante el uso de geopolímeros a base de puzolana naturalCastañeda Granda, David Israel 09 September 2019 (has links)
Los bloques de construcción ligeros son producidos mayormente con concreto ligero a
base de cemento Portland (OPC), el cual es un material de construcción con baja
densidad, baja conductividad térmica, alto aislamiento acústico y resistencia al fuego. A
pesar de que los bloques de construcción ligeros son ampliamente aceptados en el sector
de la construcción, algunas investigaciones recientes proponen reducir el uso de OPC
debido a su alto impacto ambiental y al consumo de una gran cantidad de recursos
naturales en su proceso de producción. Esta investigación presenta el desarrollo de un
bloque de construcción ligero utilizando un mortero de geopolímero a base de puzolana
y fibras naturales como alternativa de bajo impacto ambiental a los bloques de
construcción tradicionales.
Con esta finalidad, se presenta una revisión de literatura sobre los avances en el campo
de geopolímeros y geopolímeros ligeros, el uso de fibras naturales en los geopolímeros y
el uso de geopolímeros en bloques de construcción. La revisión de literatura permitió
determinar los parámetros importantes para la formulación de geopolímeros como el
tamaño y forma de las partículas de la materia prima, así como la relación molar de
SiO2/Al2O3; la relación molar SiO2/Na2O, el contenido de Na2O y la relación agua-sólido
de la solución alcalina activadora y las condiciones de curado. También se definió el
contenido de agente espumante (H2O2) y de agregado fino como los parámetros de control
para la fabricación de los geopolímeros ligeros. Por otro lado, se encontró que las fibras
naturales mejoran las características mecánicas de las matrices de los geopolímeros.
Finalmente, se registraron algunas investigaciones sobre el uso de geopolímeros como
material para la fabricación de bloques de construcción.
El plan experimental consistió en la caracterización química y física de la puzolana
molida, la optimización de las condiciones de producción de la matriz geopolimérica, del
contenido de agente espumante (H2O2) y de agregado fino para la producción de morteros
de geopolímero ligero y del proceso de producción del bloque de construcción; así como
la caracterización física y mecánica de las unidades fabricadas.
La caracterización química mediante ensayos de fluorescencia de rayos X (XRF) y
difracción de rayos X (XRD) permitieron confirmar que la puzolana es un mineral con
iv
alto contenido de SiO2 (53.55%) y Al2O3 (10.81%) y con una composición mineralógica
con alto contenido de fase amorfa (65-75%), respectivamente. La caracterización física
mediante análisis granulométrico determinó que el tamaño medio de partícula es de
11.19 μm. Los ensayos de caracterización demostraron que la puzolana es una buena
materia prima para la fabricación de geopolímeros debido a su buena composición
química, su alto contenido de fase amorfa y su bajo tamaño de partículas.
La optimización de las condiciones de producción de la matriz geopolimérica se realizó
mediante el estudio de cinco parámetros influyentes en las propiedades mecánicas del
geopolímero (relación molar SiO2/Na2O, contenido de Na2O, la relación agua/sólido, la
temperatura de curado y el tiempo de curado en horno). Esta optimización permitió
obtener una matriz geopolimérica con una resistencia a compresión de 26 MPa. Para el
desarrollo del mortero ligero se estudiaron distintos componentes de H2O2 (0.5%, 1%,
2% y 3%) y distintas relaciones en peso de puzolana : agregado fino (1:0, 3:1, 2:1 y 1:1)
obteniéndose una mezcla con una resistencia a compresión de 5.9 MPa y una densidad de
1.13 g/cm3
.
Finalmente, para la optimización del proceso de producción del bloque de construcción
ligero se realizó el diseño de geometría de la unidad y la evaluación de diferentes procesos
de desmolde y curado que permitieron que la unidad alcance la resistencia mecánica y
densidad encontrada previamente. En esta última fase se detectaron problemas de
fisuración en las paredes de la unidad de albañilería, los cuales se resolvieron mediante
la adición de fibras de yute. El bloque de construcción alcanzó una resistencia a
compresión de 5.3 MPa a los 7 días de fabricación con una densidad de 1.27 g/cm3
.
Los resultados de esta investigación indican que es posible desarrollar un bloque de
construcción ligero utilizando un mortero de geopolímero a base de puzolana. Debido a
las características de este bloque de construcción, es posible utilizarlo en la construcción
de muros de albañilería portantes y no portantes. / Tesis
|
4 |
Comparación de las propiedades mecánicas de unidades y prismas de bloques de tierra comprimida estabilizada con cemento y geopolímero de puzolanaAlvarez Ordoñez, Syndy Yesenia 08 February 2019 (has links)
El interés y la necesidad de los países en desarrollo en el uso de la tierra como material de
construcción ha fomentado el estudio continuo de sistemas de construcción más resistentes,
económicos y sostenibles. Una de las tecnologías más conocidas es la construcción industrial con
Bloques de Tierra Comprimida (BTC) que beneficia esencialmente a las regiones con bajo desarrollo
económico. Los BTC son unidades de albañilería con geometría y propiedades físicas y mecánicas
homogéneas. Los BTC son fabricados en base a tierra con determinadas características
granulométricas, la cual es compactada dentro del molde de una máquina con forma definida. La
evolución en la fabricación de BTC permite que el proceso sea más rápido, sencillo y automatizado.
Uno de los avances más útiles en las máquinas de fabricación de BTC es la incorporación de un
sistema hidráulico para compactar el suelo, lo cual evita la compactación manual que solía ser el
proceso convencional. En la actualidad, existen máquinas que producen BTC de diversas formas y
tamaños para su uso en mampostería. En la presente investigación, la forma del BTC consiste en un
prisma rectangular con un sistema de interconexión de 10 mm que se encuentra en las superficies
superior e inferior del bloque. El sistema de interconexión permite el enganche de los BTC y provee
resistencia al corte a la mampostería. Además, posee dos agujeros de 90 mm cada uno que atraviesan
el cuerpo del BTC, los cuales reducen la masa sísmica y permiten la colocación de refuerzo
vertical.
La tierra utilizada para la fabricación de BTC es sometida a un proceso de estabilización. La
estabilización química de suelos para la fabricación de BTC ha sido foco de atención de diversos
investigadores que buscan mejorar sus propiedades mecánicas de forma económica y ecosostenible. Uno
de los métodos más conocidos es la estabilización química con cemento. Sin embargo, el cemento
produce un impacto ambiental negativo durante su ciclo de vida. La presente investigación incluyó
el uso de un geopolímero de puzolana, con lo cual se estudia un material de construcción que no
solo genere menos cantidad de CO2 en su producción, sino que también posea propiedades mecánicas
adecuadas para la construcción de viviendas económicas. El objetivo del estudio es comparar las
propiedades mecánicas de las unidades y prismas de BTC estabilizados con cemento y geopolímero de
puzolana teniendo como línea base de comparación al BTC convencional fabricado sin
agente
estabilizante.
El estudio comienza con el estado del arte de la construcción con tierra y de BTC. Posteriormente,
se presenta el protocolo de los ensayos ejecutados durante de la campaña experimental. A
continuación, se desarrolla la campaña experimental dividido en tres partes:
i) proceso de producción y caracterización mecánica de BTC, ii) proceso de producción y
caracterización mecánica de BTC estabilizada y iii) caracterización mecánica del sistema de
mampostería de BTC de junta seca. Finalmente, el análisis comparativo del estudio se lleva a cabo
en base a los resultados obtenidos de la caracterización mecánica de las unidades y prismas de BTC,
BTC estabilizada con cemento y BTC estabilizada con geopolímero de puzolana.
El suelo base analizado proveniente del distrito de Ventanilla, Callao, fue mejorado con arena
gruesa con la finalidad de que la curva granulométrica del suelo mejorado se encuentre dentro del
huso granulométrico indicado en la norma UNE 41410 (2008). El proceso de estabilización química del
suelo permitió conocer que el contenido óptimo de cemento es de 8% y de geopolímero de puzolana de
15%. El porcentaje óptimo de agente estabilizante óptimo cumple con la resistencia a la
compresión mínima requerida por la norma UNE 41410 (2008) que es de 1.3 MPa para ambos casos.
Los resultados de la caracterización mecánica de BTC y BTC estabilizada se realizó en términos de
la compresión y flexión. Se obtuvieron resistencias a la compresión a los 28 días de edad de 1.3
MPa (CV 6.2%), 3.6 MPa (CV 17.9%) y 2.4 MPa (CV <1%) para BTC, BTC
estabilizada con 8% de cemento y BTC estabilizada con 15% de geopolímero de puzolana
respectivamente. La resistencia a la compresión en estado saturado del BTC estabilizada con 8% de
cemento bajó en 52% respecto a su resistencia a los 28 días de edad y en un 66% en el caso del BTC
estabilizada con 15% de geopolímero de puzolana. Además, se obtuvo el módulo de elasticidad (E) de
cada tipo de BTC: 88.2 MPa (CV 2%), 249.9 MPa (CV 3%) y
208.5 MPa (CV 3%) para el BTC, BTC estabilizada con 8% de cemento y BTC estabilizada con 15% de
geopolímero de puzolana respectivamente. Finalmente, se obtuvo la resistencia a la flexión, que
resultó 0.1 MPa (CV <1%), 0.7 MPa (CV 24.8%) y 0.2 MPa (CV 23.2%) correspondiente a los
BTC, BTC estabilizada con 8% y BTC estabilizada con 15% de geopolímero de puzolana respectivamente.
La caracterización de la mampostería de BTC de junta seca mediante el ensayo de
compresión uniaxial dio como resultado resistencias a la compresión de 0.40 MPa
(CV <1%), 1.44 MPa (CV 4%) y 0.75 MPa (CV 9%) para prismas de BTC, BTC estabilizada
con 8% de cemento y BTC estabilizada con 15% de geopolímero de puzolana
respectivamente. Se obtuvieron, además, el módulo de elasticidad (E), el módulo de Poisson
(υ) y el módulo de corte (G) en cada caso. / Tesis
|
Page generated in 0.2622 seconds