• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization and silencing of differentially abundant proteins from Pyrenophora tritici-repentis

Fu, Heting Unknown Date
No description available.
2

Lipid profiles in wheat cultivars resistant and susceptible to tan spot and the effect of disease on the profiles

Kim, Dong Won January 1900 (has links)
Master of Science / Department of Plant Pathology / William W. Bockus / The effects of tan spot on lipid profiles in wheat leaves were quantified by mass spectrometry. Inoculation with Pyrenophora tritici-repentis significantly reduced the amount of many lipids, including the major lipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), in leaves over time. These two lipids accounted for 89% of the mass spectral signal of detected lipids in wheat leaves. Reductions in amounts of lipids were at much higher rates over time for susceptible cultivars compared with resistant cultivars. Furthermore, data show that cultivars resistant to tan spot have different lipid profiles when compared with susceptible cultivars. Resistant cultivars had more MGDG and DGDG than susceptible ones, even in non-inoculated leaves. Using linear models that were fit to data, non-inoculated cultivars with a rating of 1 (highly resistant to tan spot) were calculated to have 66.1% more MGDG and 52.7% more DGDG signal than cultivars with a rating of 9 (highly susceptible). These latter findings are indirect evidence that the amounts of some lipids in wheat leaves may be determining factors in the resistance response of cultivars to tan spot.
3

Pathogenic characterization, distribution in Ohio and wheat genotype reactions to Stagonospora nodorum and Pyrenophora tritici-repentis

Engle, Jessica S. 13 July 2005 (has links)
No description available.
4

Vývoj napadení porostů ozimé pšenice významnými patogeny v České republice

Šedá, Ilona January 2013 (has links)
The thesis deals with important pathogens affecting winter wheat, in particular the speckled glume and leaf blotch on wheat(Phaeosphaeria nodorum), septoria leaf blotch on wheat(Mycosphaerella graminicola)and tan spot on wheat(Pyrenophora trtici-repentis. It outlines the biology, symptoms that appear on wheat plants, and economic importance of these diseases and emphasizes the climatic conditions needed for their development and spread .The conclusion sumarizes the occurence data of the above-mentioned 3 diseases from 3 production(corn, beetroot and potato) areas and 4 districts (2 Moravian and 2 Bohemian districts per each production area) in the period of 1971 to 2010 and compares their frequency of occurrence. That work also includes the occurrence data of the diseases from 2012 when their occurrence on winter wheat was monitored at the training experimental station of the Mendel University in Brno in Žabčice.
5

Pyrenophora tritici-repentis : investigation of factors that contribute to pathogenicity

Holman, Thomas W. (Thomas Wade) 15 August 2012 (has links)
Pyrenophora tritici-repentis (Ptr) is the necrotrophic fungus responsible for tan spot of wheat (Triticum aestivum). Ptr causes disease on susceptible wheat cultivars through the production and secretion of host-selective toxins (HSTs). HSTs are compounds that are only known to be produced by fungi and considered to be primary determinants of pathogenicity. Infiltration of these toxins into sensitive wheat elicits the same symptoms as the pathogen, which simplifies investigations of host- pathogen interactions due to exclusion of the pathogen. These characteristics make HSTs ideal molecules to dissect molecular plant-microbe interactions. Known HSTs of Ptr include Ptr ToxA (ToxA), Ptr ToxB (ToxB) and Ptr ToxC (ToxC). ToxA is the most characterized toxin of Ptr, as well as the first proteinaceous HST identified. The proposed mode-of-action for ToxA includes internalization into sensitive wheat mesophyll cells, localization to the chloroplast, photosystem perturbations and elicitation of high amounts of reactive oxygen species (ROS), all of which lead to necrosis. However, it is still unknown how ToxA is transported to the chloroplast. To identify additional interacting components involved in ToxA symptom development, genes were silenced in tobacco plants (Nicotiana benthamiana) using the tobacco rattle virus (TRV) virus-induced gene-silencing (VIGS) system. Four genes were identified that potentially could play a role in ToxA-induced cell death: a 40S ribosomal subunit, peroxisomal glycolate oxidase (GOX), a thiamine biosynthetic enzyme (Thi1), and the R-gene mediator, Sgt1. Ptr exhibits a complex race structure determined by the HST(s) produced and the symptom(s) elicited on sensitive wheat cultivars. Currently, there are eight characterized races and other HSTs and races have been proposed. Isolate SO3 was discovered in southern Oregon and elicits ToxA-like symptoms on a wheat differential set, yet lacks the ToxA gene. The transcriptome of SO3 was sequenced, assembled, and aligned to a ToxA-producing isolate, Pt-1C-BFP, which will aid in the identification of the protein(s) that may be responsible for these ToxA-like symptoms. SO3 contains a set of 497 sequences that were not found in the ToxA-producing isolate Pt-1C-BFP (BFP). These sequences should be further investigated to identify those that encode small secreted proteins (SSPs) and could potentially serve as HSTs and pathogenicity factors of SO3. / Graduation date: 2013

Page generated in 0.0986 seconds